Researchers created a light-driven catalyst for hydrogen production, offering an emission-free alternative to traditional methods. Photo by Jeff Fitlow/Rice University

Researchers at Rice University have developed a catalyst that could render steam methane reforming, or SMR, entirely emission-free by using light rather than heat to drive the reaction.

The researchers believe the work could prove to be a breakthrough for extending catalyst lifetimes. This will improve efficiencies and reduce costs for a number of industrial processes that are affected by a form of carbon buildup that can deactivate catalysts called coking.

The new copper-rhodium photocatalyst uses an antenna-reactor design. When it is exposed to a specific wavelength of light it breaks down methane and water vapor without external heating into hydrogen and carbon monoxide. The importance of this is it is a chemical industry feedstock that is not a greenhouse gas. Rice’s work also shows that the antenna-reactor technology can overcome catalyst deactivation due to oxidation and coking by employing hot carriers to remove oxygen species and carbon deposits, which effectively regenerates the catalyst with light.

The new SMR reaction pathway build off a 2011 discovery from Peter Nordlander, Rice’s Wiess Chair and Professor of Physics and Astronomy and professor of electrical and computer engineering and materials science and nanoengineering, and Naomi Halas. They are the authors on the study about the research that was published in Nature Catalysis. The study showed that the collective oscillations of electrons that occur when metal nanoparticles are exposed to light can emit “hot carriers” or high-energy electrons and holes that can be used to drive chemical reactions.

“This is one of our most impactful findings so far, because it offers an improved alternative to what is arguably the most important chemical reaction for modern society,” Norlander says in a news release.

The research was supported by Robert A. Welch Foundation (C-1220, C-1222) and the Air Force Office of Scientific Research (FA9550-15-1-0022) with the Shared Equipment Authority at Rice providing data analysis support.

“This research showcases the potential for innovative photochemistry to reshape critical industrial processes, moving us closer to an environmentally sustainable energy future,” Halas adds.

Hydrogen has been studied as it could assist with the transition to a sustainable energy ecosystem, but the chemical process responsible for more than half of the current global hydrogen production is a substantial source of greenhouse gas emissions.Hydrogen is produced in large facilities that require the gas to be transported to its point of use. Light-driven SMR allows for on-demand hydrogen generation,which researchers believe is a key benefit for use in mobility-related applications like hydrogen fueling stations or and possibly vehicles.

------

This article originally ran on EnergyCapital.

Rice University researchers and Syzygy founders detail how they converted ammonia into carbon-free fuel using a light-activated catalyst in a new report. Photo courtesy of Rice University

Houston startup founders report on clean energy tech efficacy

seeing results

A team from Rice University has uncovered an inexpensive, scalable way to produce clean-burning hydrogen fuel.

In research published this month in the journal Science, researchers from Rice’s Laboratory for Nanophotonics, in partnership with Syzygy Plasmonics Inc. and Princeton University’s Andlinger Center for Energy and the Environment, detail how they converted ammonia into carbon-free fuel using a light-activated catalyst.

The new catalyst separates the liquid ammonia into hydrogen gas and nitrogen gas. Traditional catalysts require heat for chemical transformations, but the new catalyst can spur reactions with just the use of sunlight or LED light.

Additionally, the team showed that copper-iron antenna-reactors could be used in these light-driven chemical reactions, known as plasmonic photocatalysis. In heat-based reactions, or thermocatalysis, platinum, and related precious (and expensive) metals like palladium, rhodium, and ruthenium are required.

“Transition metals like iron are typically poor thermocatalysts,” Naomi Halas, a co-author of the report from Rice, said in a statement. “This work shows they can be efficient plasmonic photocatalysts. It also demonstrates that photocatalysis can be efficiently performed with inexpensive LED photon sources.”

Halas, Rice's Stanley C. Moore Professor of Electrical and Computer Engineering, was joined on the project by Peter Nordlander, Rice’s Wiess Chair and Professor of Physics and Astronomy, and Rice alumni and adjunct professor of chemistry Hossein Robatjazi. Emily Carter, the Gerhard R. Andlinger Professor in Energy and Environment, represented Princeton University.

“These results are a great motivator," Carter added. "They suggest it is likely that other combinations of abundant metals could be used as cost-effective catalysts for a wide range of chemical reactions.”

Houston-based Syzygy, which Halas and Nordlander founded in 2018, has licensed the technology used in the research and has begun scaled-up tests of the catalyst in the company’s commercially available, LED-powered reactors. According to Rice, the test at Syzygy showed the catalysts retained their efficiency under LED illumination and at a scale 500 times larger than in tests in the lab setup at Rice.

“This discovery paves the way for sustainable, low-cost hydrogen that could be produced locally rather than in massive centralized plants,” Nordlander said in a statement.

Earlier this month, Syzygy closed its $76 million series C round to continue its technology development ahead of future deployment/

Houston is home to many other organizations and researchers leading the charge in growing the hydrogen economy.

Earlier this year, Mayor Sylvester Turner announced he's determined to position the city as hub for hydrogen innovation as one of the EPA's Regional Clean Hydrogen Hubs. Organizations in Texas, Southwest Louisiana and the surrounding Gulf Coast region, known and HyVelocity Hub, also announced this month that it would be applying for the regional funding.

And according to a recent report from The Center for Houston's Future, the Bayou City is poised to "lead a transformational clean hydrogen hub with global impact."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas female-founded companies raised more than $1 billion in 2024, VC data shows

by the numbers

Female-founded companies in Dallas-Fort Worth may rack up more funding deals and more money than those in Houston. However, Bayou City beats DFW in one key category — but just barely.

Data from PitchBook shows that in the past 16 years, female-founded companies in DFW collected $2.7 billion across 488 deals. By comparison, female-founded companies in the Houston area picked up $1.9 billion in VC through 343 deals.

Yet if you do a little math, you find that Houston ekes out an edge over DFW in per-deal values. During the period covered by the PitchBook data, the value of each of the DFW deals averaged $5.53 million. But at $5,54 million, Houston was just $6,572 ahead of DFW for average deal value.

Not surprisingly, the Austin area clobbered Houston and DFW.

During the period covered by the PitchBook data, female-founded companies in the Austin area hauled in $7.5 billion across 1,114 deals. The average value of an Austin deal: more than $6.7 million.

Historically, funding for female-established companies has lagged behind funding for male-established companies. In 2024, female-founded companies accounted for about one-fourth of all VC deals in the U.S., according to PitchBook.

PitchBook noted that in 2024, female-founded companies raised $38.8 billion, up 27 percent from the previous year, but deal count dropped 13.1 percent, meaning more VC for fewer startups. In Texas, female-founded companies brought in $1.3 billion last year via 151 deals. The total raised is the same as 2023, when Texas female founders got $1.3 billion in capital across 190 deals.

“The VC industry is still trying to find solid footing after its peak in 2021. While some progress was made for female founders in 2024, particularly in exit activity, female founders and investors still face an uphill climb,” says Annemarie Donegan, senior research analyst at PitchBook.

Here are 3 Houston innovators to know right now

Innovators to Know

Editor's note: These Houston innovators are making big strides in the fields of neurotechnology, neurodevelopmental diagnosis, and even improving the way we rest and recharge.

For our latest roundup of Innovators to Know, we meet a researcher who is working with teams in Houston and abroad to develop an innovative brain implant; a professor who has created an AI approach to diagnosis; and a local entrepreneur whose brand is poised for major expansion in the coming years.

Jacob Robinson, CEO of Motif Neurotech

Houston startup Motif Neurotech has been selected by the United Kingdom's Advanced Research + Invention Agency (ARIA) to participate in its inaugural Precision Neurotechnologies program. The program aims to develop advanced brain-interfacing technologies for cognitive and psychiatric conditions. Three Rice labs will collaborate with Motif Neurotech to develop Brain Mesh, which is a distributed network of minimally invasive implants that can stimulate neural circuits and stream neural data in real time. The project has been awarded approximately $5.9 million.

Motif Neurotech was spun out of the Rice lab of Jacob Robinson, a professor of electrical and computer engineering and bioengineering and CEO of Motif Neurotech.

Robinson will lead the system and network integration and encapsulation efforts for Mesh Points implants. According to Rice, these implants, about the size of a grain of rice, will track and modulate brain states and be embedded in the skull through relatively low-risk surgery. Learn more.

Dr. Ryan S. Dhindsa, Dhindsa Lab

Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, and his team have developed an artificial intelligence-based approach that will help doctors to identify genes tied to neurodevelopmental disorders. Their research was recently published the American Journal of Human Genetics.

Dhindsa Lab uses “human genomics, human stem cell models, and computational biology to advance precision medicine.” The diagnoses that stem from the new computational tool could include specific types of autism spectrum disorder, epilepsy and developmental delay, disorders that often don’t come with a genetic diagnosis.

“Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered,” Dhindsa says. Learn more.

Khaliah Guillory, Founder of Nap Bar

From nap research to diversity and inclusion, this entrepreneur is making Houston workers more productiveFrom opening Nap Bar and consulting corporations on diversity and inclusion to serving the city as an LGBT adviser, Khaliah Guillory is focused on productivity. Courtesy of Khaliah Guillory

Khalia Guillory launched her white-glove, eco-friendly rest sanctuary business, Nap Bar, in Houston in 2019 to offer a unique rest experience with artificial intelligence integration for working professionals, entrepreneurs and travelers who needed a place to rest, recharge and rejuvenate.

Now she is ready to take it to the next level, with a pivot to VR and plans to expand to 30 locations in three years.

Guillory says she’s now looking to scale the business by partnering with like-minded investors with experience in the wellness space. She envisions locations at national and international airports, which she says offer ripe scenarios for patrons needing to recharge. Additionally, Guillory wants to build on her initial partnership with UT Health by going onsite to curate rest experiences for patients, caregivers, faculty, staff, nurses and doctors. Colleges also offer an opportunity for growth. Learn more.

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."