Memorial Park Conservancy's renovations include some projects that are rare or never been done before. Photo courtesy of MPC

Memorial Park is undergoing a huge transformation that is mixing a little bit of old with the new.

The Memorial Park Master Plan includes adding breathtaking new projects — like water features, a new athletic complex, and more — as well as conservation efforts that restore parts of the land that were native coastal prairie. The project is a collaborative effort between Memorial Park Conservancy, Uptown Houston TIRZ, and Houston Parks and Recreation Department to redevelop the 1,500-acre park.

The Master Plan is set to deliver a series of projects ahead of 2028, and there are a few initiatives that are innovative and different from other urban parks' transformations, notes MPC's president and CEO Shellye Arnold.

The Land Bridge

Photo courtesy of MPC

A big part of Memorial Park's transformation is restoring the park to native species and ecosystems.

"We're taking ball fields, parking lots, and roads and converting them back to what was here — native wetland coastal prairie," Arnold says. "This serves important stormwater purposes."

In order to connect two native coastal prairie lands on either side of Memorial Drive, MPC is building a unique 30-foot-high land bridge the size of three-and-a-half football fields. The space will be large enough that you don't even realize you're standing over a busy street, Arnold says.

The prairies will serve an important purpose for rainwater collection — a growing need within the city of Houston.

"We're channeling [rainwater] into this prairie where some of it can be absorbed, cleansed, slowed down," says Arnold. "And then what doesn't get slowed down and absorbed can flow through the prairie [on the other side], which is even bigger."

The Land Bridge also serves another purpose that park goers have wanted, Arnold says: Connectivity.

"[They] want access across the Memorial Drive — [they] want to safe access, and so this is the response. It's a pretty bold and visionary response," Arnold says.

BioCycling

Photo courtesy of MPC

In 2011, a major drought decimated the park and areas saw losses of 50 to even 90 percent of the canopy of trees. MPC and its team saved what could be saved, and the rest is serving a new purpose to the park.

"We took the trees that we lost on the drought that people felt such a tremendous loss for and ground them all up, and they are in a biocycle in a two-acre area in the back of the park," Arnold says.

The soil created — some of which includes manure from the animals at the Houston Zoo — has already been used on some plants in the park, and Arnold says those plants are thriving.

"It's cool that those those trees are giving life to the park," Arnold says.

Invasive species of trees that are plucked from out of the park are also being ground up and used in the same way.

"There isn't anything this big like this in an urban park setting like this kind of recycling effort," she says.

The biocycling process is scalable too.

"We could open this up to other organizations," Arnold says. "It's so much better ecologically to take trees and grind them up and use it inside the space rather than haul them out to landfill way outside of town and dump them."

The benefit to the program is that MPC can retain some of the soil it produces for these other organizations and use it on site.

Biodiversity initiatives and research

Photo courtesy of MPC

When putting the plans in place, MPC and its partners called on 25 of the best ecologists, as well as 50 more park and other types of consultants specializing in everything from insects and wildlife to prairies and trees.

Just as the Land Bridge is creating new prairie space, other initiatives throughout the park will be focused on eliminating invasive species and bringing back the natural ecosystem of the park.

The Easter Glades project, which is set to deliver next year, will have a habitat for fish, and will not allow any fishing or boating. Carolyn White, conservation director at MPC, is working with the Texas Wildlife Association to bring in the right species of fish.

Arnold says that MPC works with other organizations in an innovative way to bring native plants into MPC, since the park has the space for these organizations to use to cultivate and propagate plants.

"They bring their native plants and they grow them with their volunteers, and they leave us a little bit here," Arnold says. "We could never buy enough native plants to go inside this park."

Memorial Park Conservancy is gearing up to unveil one if its first projects within its 10-year master plan redevelopment. Photo courtesy of MPC

Memorial Park Conservancy plans to deliver its first project of its master plan redevelopment next year

Coming soon

Memorial Park Conservancy has until 2028 to deliver on its master plan redevelopment project, but if MPC president and CEO Shellye Arnold has anything to say about it, the plan will be completed way ahead of that.

The project is a collaborative effort between MPC, Uptown Houston TIRZ, and Houston Parks and Recreation Department to redevelop the 1,500-acre park. In 2011, a major drought decimated the park and areas saw losses of 50 to even 90 percent of the canopy of trees.

"As tragic as it was, it made people take action," says Arnold.

Following the drought, these organizations looked to the people to see what was needed and wanted by the 3 million visitors and residents of the 170 ZIP codes that frequent the park annually.

"There was a huge outcry to do something," Arnold says. "That something became an effort to define the future of the park in a way that would be powerful, bold, thoughtful, innovative, and very resilient. It would consider Houstonians of the future and Houstonians today. It would consider soils, storm water treatment, the wildlife, and what people want."

When putting the plans in place, MPC and its partners called on 25 of the best ecologists, as well as 50 more park and other types of consultants specializing in everything from insects and wildlife to prairies and trees.

The overall funding plan is a total of $205 million — MPC itself has a capital campaign goal of $50 million — with $32 million to go. A $70 million donation from the Kinder Foundation is the most significant contribution within the fundraising efforts. The foundation approached MPC asking to help contribute to the most transformative project in the master plan, Arnold says, and so they suggested the Eastern Glades, a park within a park and the first project within the master plan to deliver.

MPC expects the Eastern Glades to open next summer — and much of the construction has already been completed. The area will be a 100-acre park within a park with wetlands, a man-made pond, 9 acres of picnic space, and three picnic pavilions.

Eastern Glades

Photo courtesy of MPC

"The full 100-acre Eastern Glades project will provide an amenity that we do not have right now," says Arnold in a release, "a place to put down a blanket and read a book, relax on a park bench, or go for a leisurely walk and just enjoy being outdoors."

In addition to the Eastern Glades, the park will also reopen some relocated ballparks next year.

After next year, the MPC and its master plan partners will deliver a slew of other projects on a rolling basis.

Here are some other exciting ones you can expect in the next few years:

Running Complex

Photo courtesy of MPC

Running is such an important part of Memorial Park, Arnold says, citing the Seymour Lieberman's millions of annual visitors. The $19 million running complex is expected to deliver in 2022.

Memorial Groves

Photo courtesy of MPC

There's a section of Memorial Park that has more history than the rest of the land. The master plan includes a 100-acre, $21.5 million memorial for the fallen soldiers from Camp Logan that's expected to deliver in 2022.

"There were a handful of WWI training camps — this was one of the sites that was chosen," Arnold says. "We have archeological features in the park."

The memorial will feature native pine trees that will be planted in a formation that looks as if they are standing in attention.

The Land Bridge

Photo courtesy of MPC

Possibly the most striking of all the plans is the Land Bridge. The project will connect each of the prairie wetlands on either side of Memorial Drive with a 30-foot-high arch of land. The space will be large enough that you don't even realize you're standing over a busy street, Arnold says. The Land Bridge is planned to deliver in 2022.

Stormwater management

Photo courtesy of Mir

An ongoing part of the transformation will be stormwater management upgrades. MPC has budgeted $3 million to this asset of the renovation. While a part of the plan is tributaries for run-off water, bringing back prairie and wetlands will do a great deal to help abate stormwater.

"We're taking ball fields, parking lots, and roads and converting them back to what was here — native wetland coastal prairie," Arnold says. "This serves important stormwater purposes."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team’s discovery brings solid-state batteries closer to EV use

A Better Battery

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

---

This article originally appeared on EnergyCaptialHTX.com.

Rice biotech accelerator appoints 2 leading researchers to team

Launch Pad

The Rice Biotech Launch Pad, which is focused on expediting the translation of Rice University’s health and medical technology discoveries into cures, has named Amanda Nash and Kelsey L. Swingle to its leadership team.

Both are assistant professors in Rice’s Department of Bioengineering and will bring “valuable perspective” to the Houston-based accelerator, according to Rice. 

“Their deep understanding of both the scientific rigor required for successful innovation and the commercial strategies necessary to bring these technologies to market will be invaluable as we continue to build our portfolio of lifesaving medical technologies,” Omid Veiseh, faculty director of the Launch Pad, said in a news release.

Amanda Nash

Nash leads a research program focused on developing cell communication technologies to treat cancer, autoimmune diseases and aging. She previously trained as a management consultant at McKinsey & Co., where she specialized in business development, portfolio strategy and operational excellence for pharmaceutical and medtech companies. She earned her doctorate in bioengineering from Rice and helped develop implantable cytokine factories for the treatment of ovarian cancer. She holds a bachelor’s degree in biomedical engineering from the University of Houston.

“Returning to Rice represents a full-circle moment in my career, from conducting my doctoral research here to gaining strategic insights at McKinsey and now bringing that combined perspective back to advance Houston’s biotech ecosystem,” Nash said in the release. “The Launch Pad represents exactly the kind of translational bridge our industry needs. I look forward to helping researchers navigate the complex path from discovery to commercialization.”

Kelsey L. Swingle

Swingle’s research focuses on engineering lipid-based nanoparticle technologies for drug delivery to reproductive tissues, which includes the placenta. She completed her doctorate in bioengineering at the University of Pennsylvania, where she developed novel mRNA lipid nanoparticles for the treatment of preeclampsia. She received her bachelor’s degree in biomedical engineering from Case Western Reserve University and is a National Science Foundation Graduate Research Fellow.

“What draws me to the Rice Biotech Launch Pad is its commitment to addressing the most pressing unmet medical needs,” Swingle added in the release. “My research in women’s health has shown me how innovation at the intersection of biomaterials and medicine can tackle challenges that have been overlooked for far too long. I am thrilled to join a team that shares this vision of designing cutting-edge technologies to create meaningful impact for underserved patient populations.”

The Rice Biotech Launch Pad opened in 2023. It held the official launch and lab opening of RBL LLC, a biotech venture creation studio in May. Read more here.

University of Houston archaeologists make history with Mayan tomb discovery

History in the Making

Two University of Houston archaeologists have made scientific history with the discovery of a Mayan king's tomb in Belize.

The UH team led by husband and wife scientists Arlen F. Chase and Diane Z. Chase made the discovery at Caracol, the largest Mayan archeological site in Belize, which is situated about 25 miles south of Xunantunich and the town of San Ignacio. Together with Belize's Institute of Archeology, as well as support from the Geraldine and Emory Ford Foundation and the KHR Family Fund, they uncovered the tomb of Caracol's founder, King Te K’ab Chaak. Their work used airborne light detection and ranging technology to uncover previously hidden roadways and structures that have been reclaimed by the jungle.

The tomb was found at the base of a royal family shrine. The king, who ascended the throne in 331 AD, lived to an advanced enough age that he no longer had teeth. His tomb held a collection of 11 pottery vessels, carved bone tubes, jadeite jewelry, a mosaic jadeite mask, Pacific spondylus shells, and various other perishable items. Pottery vessels found in the chamber depict a Maya ruler wielding a spear as he receives offerings from supplicants represented as deities; the figure of Ek Chuah, the Maya god of traders, surrounded by offerings; and bound captives, a motif also seen in two related burials. Additionally, two vessels had lids adorned with modeled handles shaped like coatimundi (pisote) heads. The coatimundi, known as tz’uutz’ in Maya, was later adopted by subsequent rulers of Caracol as part of their names.

 Diane Chase archaeologist in Mayan tomb Diane Z. Chase in the Mayan tomb. Photo courtesy of University of Houston

During the Classical Period, Caracol was one of the main hubs of the Mayan Lowlands and covered an area bigger than that of present-day Belize City. Populations survived in the area for at least 1,000 years before the city was abandoned sometime around 900 AD. The royal dynasty established by Te K’ab Chaak continued at Caracol for over 460 years.

The find is also significant because this was roughly when the Mexican city of Teotihuacan made contact with Caracol, leading to a long relationship of trade and cultural exchange. Cremation sites found in Caracol contain items that would have come from Teotihuacan, showing the relationship between the two distant cities.

"Both central Mexico and the Maya area were clearly aware of each other’s ritual practices, as reflected in the Caracol cremation," said Arlen F. Chase, professor and chair of Comparative Cultural Studies at the University of Houston.

“The connections between the two regions were undertaken by the highest levels of society, suggesting that initial kings at various Maya cities — such as Te K’ab Chaak at Caracol — were engaged in formal diplomatic relationships with Teotihuacan.”

The Chases will present their findings at a conference on Maya–Teotihuacan interaction hosted by the Maya Working Group at the Santa Fe Institute in New Mexico in August 2025.

 UH professors Chase make Mayan Discovery UH archaeologists Arlen F. Chase and Diane Z. Chase Photo courtesy of University of Houston

 

---

This story originally appeared on CultureMap.com.