Axiom Space and Intuitive Machines have shared updates on some of their latest projects. Photo courtesy of NASA

Houston-based space tech companies Axiom Space and Intuitive Machines recently shared updates on innovative projects and missions, each set to launch by 2027.

Axiom Space

Axiom Space, developer of the world’s first commercial space station and other space infrastructure, is gearing up to launch two orbital data center nodes to low-earth orbit by the end of 2025.

The Axiom Space nodes will lay the foundation for space-based cloud computing. Axiom says orbital data centers provide cloud-enabled data storage and processing, artificial intelligence, and machine learning directly to satellites, constellations, and other spacecraft in Earth’s orbit. This innovation will reduce reliance on earth-based systems, enhance wireless mesh networks and improve real-time operation of space-borne assets, according to Axiom.

Axiom has been working on the development of orbital data centers since 2022. The two nodes going into space in 2025 will be part of Kepler Communications’ 10-satellite data relay network, which is scheduled to launch by the end of this year. Axiom Space and Kepler Communications have been collaborating since 2023.

Kam Ghaffarian, co-founder, executive chairman, and CEO of Axiom, says his company already has deals in place with buyers of space-based cloud computing services. Orbital data centers “are integral to Axiom Space’s vision of era-defining space infrastructure, unlocking transformational capabilities and economic growth,” he says.

Axiom Space says it will be able to buy additional payloads on Kepler’s network to boost capacity for orbital data centers. The two companies will team up to provide network and orbital data center services to various customers.

Intuitive Machines

Meanwhile, Intuitive Machines, a space exploration, infrastructure and services company, has picked SpaceX’s Falcon 9 rocket to launch its fourth delivery mission to the moon. The launch will include two lunar data relay satellites for NASA.

Intuitive Machines says its fourth lunar delivery mission is scheduled for 2027. The mission will comprise six NASA commercial lunar payloads, including a European Space Agency drill set designed to search for water at the moon’s south pole.

“Lunar surface delivery and data relay satellites are central to our strategy to commercialize the moon,” Intuitive Machines CEO Steve Altemus says.

The first of five lunar data relay satellites will be included in the company’s third delivery mission to the moon. The fourth mission, featuring two more satellites, will be followed by two other satellite-delivery missions.

Mario Romero is an engineer for Intuitive Machines and a former Navy SEAL. He credits his successes in STEM to second—and third—chances. Photo via LinkedIn

Intuitive Machines engineer talks STEM, innovation, and second chances

Innovator Interview

Mario Romero is an assembly, integration, and test engineer at the innovative Houston aerospace company Intuitive Machines. He previously served as a Navy SEAL and an EVA Flight Simulator Specialist at NASA.

Intuitive Machines landed its IM-2 mission on the moon last month, before calling an early end of mission. The company reported that its lunar lander was on its side, preventing it from completing the mission as planned.

Still, the IM-2 mission landed closer to the lunar South Pole than any previous lander, according to NASA. And the company still has plenty of innovative projects in the works.

The company secured about $2.5 million from NASA to study challenges related to carrying cargo on the company’s lunar lander and hauling cargo on the moon. The lander will be used for NASA’s Artemis missions to the moon and eventually to Mars.

“Someone has to do it; in fact, the more the merrier,” Romero says on being part of an innovative culture.

“Competition forces innovation, and if I can be selfish for a moment, I think it’s of particular importance for Intuitive Machines because my extremely capable team is more than worthy of having their place stamped in history. We, as a species, have to strive to become a multiplanetary species. Incidentally, part of the trickle-down effect of innovation often leads to spin-off technology that in some way benefits humanity here on Earth.”

Last year, Romero was awarded the key to the city from his hometown of Vineland, New Jersey, and made it a point in his speech to give kids a chance to succeed in the future.

“I am the product of many chances, secondary, tertiary, and more, given to me,” Romero says. “Many of these were admittedly entirely undeserving. I look back now and recognize that those teachers, judges, police, etc. might have all seen something in me that I couldn’t then see in myself. … This is precisely why I often emphasize giving kids multiple chances. Kids are kids, and you can never fully know how you’re inspiring them in the moment, nor how the chances that you give them will affect the trajectory of their lives.”

Texas is expected to represent nearly 10 percent of future STEM opportunities in the nation, and nine of the 20 biggest employers in Texas are STEM-related.

As STEM has become increasingly popular in high schools and at the university level, and the aerospace industry continues to innovate, it is possible that many young future innovators may take the same path a young Romero did.

“I think it’s natural that when new leaps are made in the STEM fields, and in the aerospace realm at large, the youth in general become galvanized by it,” Romero says.

“It’s exciting and reinvigorating to understand that humanity is on the cusp of the next great adventure. As fantastic and essential as this is, I want to emphasize the importance of the arts as well. It has an important place and an important role to play in our evolution, so I personally don’t limit youthful interest to STEM alone. There are fantastic works of art awaiting us, in all their variety, that will come as a result of the efforts and innovation.”

Intuitive Machines will study challenges related to carrying cargo on its lunar lander and hauling cargo on the moon. Photo courtesy of NASA

Houston space company lands latest NASA deal to advance lunar logistics

To The Moon

Houston-based space exploration, infrastructure, and services company Intuitive Machines has secured about $2.5 million from NASA to study challenges related to carrying cargo on the company’s lunar lander and hauling cargo on the moon. The lander will be used for NASA’s Artemis missions to the moon and eventually to Mars.

“Intuitive Machines has been methodically working on executing lunar delivery, data transmission, and infrastructure service missions, making us uniquely positioned to provide strategies and concepts that may shape lunar logistics and mobility solutions for the Artemis generation,” Intuitive Machines CEO Steve Altemus says in a news release.

“We look forward to bringing our proven expertise together to deliver innovative solutions that establish capabilities on the [moon] and place deeper exploration within reach.”

Intuitive Machines will soon launch its lunar lander on a SpaceX Falcon 9 rocket to deliver NASA technology and science projects, along with commercial payloads, to the moon’s Mons Mouton plateau. Lift-off will happen at NASA’s Kennedy Space Center in Florida within a launch window that starts in late February. It’ll be the lander’s second trip to the moon.

In September, Intuitive Machines landed a deal with NASA that could be worth more than $4.8 billion.

Under the contract, Intuitive Machines will supply communication and navigation services for missions in the “near space” region, which extends from the earth’s surface to beyond the moon.

The five-year deal includes an option to add five years to the contract. The initial round of NASA funding runs through September 2029.

Launched from South Texas, SpaceX's Starship survived for around 50 minutes before losing contact and landing in the Indian Ocean. Photo via SpaceX/Twitter

SpaceX's mega rocket launch from Texas base provides mixed results

50-minute flight

SpaceX came close to completing an hourlong test flight of its mega rocket on its third try Thursday, but the spacecraft was lost as it descended back to Earth.

The company said it lost contact with Starship as it neared its goal, a splashdown in the Indian Ocean. The first-stage booster also ended up in pieces, breaking apart much earlier in the flight over the Gulf of Mexico after launching from the southern tip of Texas near the Mexican border.

“The ship has been lost. So no splashdown today,” said SpaceX’s Dan Huot. “But again, it’s incredible to see how much further we got this time around.”

Two test flights last year both ended in explosions minutes after liftoff. By surviving for close to 50 minutes this time, Thursday's effort was considered a win by not only SpaceX's Elon Musk, but NASA as well as Starship soared higher and farther than ever before. The space agency is counting on Starship to land its astronauts on the moon in another few years.

The nearly 400-foot (121-meter) Starship, the biggest and most powerful rocket ever built, headed out over the Gulf of Mexico after liftoff Thursday morning, flying east. Spectators crowded the nearby beaches in South Padre Island and Mexico.

A few minutes later, the booster separated seamlessly from the spaceship, but broke apart 1,500 feet (462 meters) above the gulf, instead of plummeting into the water intact. By then, the spacecraft was well to the east and continuing upward, with no people or satellites on board.

Starship reached an altitude of about 145 miles (233 kilometers) as it coasted across the Atlantic and South Africa, before approaching the Indian Ocean. But 49 minutes into the flight — with just 15 minutes remaining — all contact was lost and the spacecraft presumably broke apart.

At that point, it was 40 miles (65 kilometers) high and traveling around 16,000 mph (25,700 kph).

SpaceX's Elon Musk had just congratulated his team a little earlier. “SpaceX has come a long way,” he said via X, formerly called Twitter. The rocket company was founded exactly 22 years ago Thursday.

NASA watched with keen interest: The space agency needs Starship to succeed in order to land astronauts on the moon in the next two or so years. This new crop of moonwalkers — the first since last century’s Apollo program — will descend to the lunar surface in a Starship after transferring from NASA's Orion capsule in lunar orbit.

NASA Administrator Bill Nelson quickly congratulated SpaceX on what he called a successful test flight as part of the space agency's Artemis moon-landing program.

The stainless steel, bullet-shaped spacecraft launched atop a first-stage booster known as the Super Heavy. Both the booster and the spacecraft are designed to be reusable, although they were never meant to be salvaged Thursday.

On Starship’s inaugural launch last April, several of the booster’s 33 methane-fueled engines failed and the booster did not separate from the spacecraft, causing the entire vehicle to explode and crash into the gulf four minutes after liftoff.

SpaceX managed to double the length of the flight during November’s trial run. While all 33 engines fired and the booster peeled away as planned, the flight ended in a pair of explosions, first the booster and then the spacecraft.

The Federal Aviation Administration reviewed all the corrections made to Starship, before signing off on Thursday’s launch. The FAA said after the flight that it would again investigate what happened. As during the second flight, all 33 booster engines performed well during ascent, according to SpaceX.

Initially, SpaceX plans to use the mammoth rockets to launch the company’s Starlink internet satellites, as well as other spacecraft. Test pilots would follow to orbit, before the company flies wealthy clients around the moon and back. Musk considers the moon a stepping stone to Mars, his ultimate quest.

NASA is insisting that an empty Starship land successfully on the moon, before future moonwalkers climb aboard. The space agency is targeting the end of 2026 for the first moon landing crew under the Artemis program, named after the mythological twin sister of Apollo.

NASA has announced it's pushed back two historic missions — the first of which was originally planned for later this year. Photo via NASA/Ben Smegelsky

NASA postpones historic crew landing until 2026

Houston, we have a delay

Astronauts will have to wait until next year before flying to the moon and another few years before landing on it, under the latest round of delays announced by NASA on Tuesday.

The space agency had planned to send four astronauts around the moon late this year, but pushed the flight to September 2025 because of safety and technical issues. The first human moon landing in more than 50 years also got bumped, from 2025 to September 2026.

“Safety is our top priority," said NASA Administrator Bill Nelson. The delays will “give Artemis teams more time to work through the challenges.”

The news came barely an hour after a Pittsburgh company abandoned its own attempt to land its spacecraft on the moon because of a mission-ending fuel leak.

Launched on Monday as part of NASA's commercial lunar program, Astrobotic Technology's Peregrine lander was supposed to serve as a scout for the astronauts. A Houston company will give it a shot with its own lander next month.

NASA is relying heavily on private companies for its Artemis moon-landing program for astronauts, named after the mythological twin sister of Apollo.

SpaceX’s Starship mega rocket will be needed to get the first Artemis moonwalkers from lunar orbit down to the surface and back up. But the nearly 400-foot (121-meter) rocket has launched from Texas only twice, exploding both times over the Gulf of Mexico.

The longer it takes to get Starship into orbit around Earth, first with satellites and then crews, the longer NASA will have to wait to attempt its first moon landing with astronauts since 1972. During NASA’s Apollo era, 12 astronauts walked on the moon.

The Government Accountability Office warned in November that NASA was likely looking at 2027 for its first astronaut moon landing, citing Elon Musk’s Starship as one of the many technical challenges. Another potential hurdle: the development of moonwalking suits by Houston’s Axiom Space.

“We need them all to be ready and all to be successful in order for that very complicated mission to come together,” said Amit Kshatriya, NASA's deputy associate administrator.

NASA has only one Artemis moonshot under its belt so far. In a test flight of its new moon rocket in 2022, the space agency sent an empty Orion capsule into lunar orbit and returned it to Earth. It’s the same kind of capsule astronauts will use to fly to and from the moon, linking up with Starship in lunar orbit for the trip down to the surface.

Starship will need to fill up its fuel tank in orbit around Earth, before heading to the moon. SpaceX plans an orbiting fuel depot to handle the job, another key aspect of the program yet to be demonstrated.

NASA’s moon-landing effort has been delayed repeatedly over the past decade, adding to billions of dollars to the cost. Government audits project the total program costs at $93 billion through 2025.

The history-making team was announced at Ellington Field near Johnson Space Center in Houston. Photo via LinkedIn

NASA names four astronauts heading to the moon at Houston event

ready for liftoff

NASA and the Canadian Space Agency announced the four astronauts who will be onboard the Artemis II mission around the moon yesterday at an event at Ellington Field near NASA’s Johnson Space Center in Houston.

The 10-day mission is slated to put the first woman and the first person of color on the moon.

“For the first time in more than 50 years, these individuals – the Artemis II crew – will be the first humans to fly to the vicinity of the Moon. Among the crew are the first woman, first person of color, and first Canadian on a lunar mission, and all four astronauts will represent the best of humanity as they explore for the benefit of all,” says JSC Director Vanessa Wyche. “This mission paves the way for the expansion of human deep space exploration and presents new opportunities for scientific discoveries, commercial, industry and academic partnerships and the Artemis Generation.”

The crew assignments include:

  • Commander Reid Wiseman, who has logged more than 165 days in space in two trips. He previously served as a flight engineer aboard the International Station and most recently served as chief of the Astronaut Office from December 2020 until November 2022.
  • Pilot Victor Glover, who served as pilot on NASA’s SpaceX Crew-1 mission in 2021. This will be his second trip to space.
  • Mission Specialist 1 Christina Hammock Koch, who set the record for longest single spaceflight by a woman with a total of 328 days in space and participated in the first all-female spacewalks. This will be her second flight into space.
  • Mission Specialist 2 Jeremy Hansen, representing Canada. Hansen is a colonel in the Canadian Armed Forces and former fighter pilot and has served as Capcom in NASA's Mission Control Center at Johnson Space Center. He was the first Canadian to lead a NASA astronaut class. This will be his first flight into space.

Meet the four astronauts who will return humans to the moon. Photo courtesy of NASA

“NASA astronauts Reid Wiseman, Victor Glover, and Christina Hammock Koch, and CSA astronaut Jeremy Hansen, each has their own story, but, together, they represent our creed: E pluribus unum – out of many, one," NASA Administrator Bill Nelson said. "Together, we are ushering in a new era of exploration for a new generation of star sailors and dreamers–the Artemis Generation.”

Artemis II is slated to build upon the uncrewed Artemis I mission that was completed in December. The crew will be NASA's first to aboard the agency's deep space rocket, the Space Launch System, and Orion spacecraft. They will test the spacecrafts' systems to ensure they operate as planned for humans in deep space before setting course for the moon.

NASA's Artemis program collaborates with commercial and international partners with the goal of establishing a long-term presence on the moon. Lessons learned from the missions are planned to be used to send the first astronauts to Mars.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston neighbor named richest small town in Texas for 2025

Ranking It

Affluent Houston neighbor Bellaire is cashing in as the richest small town in Texas for 2025, according to new study from GoBankingRates.

The report, "The Richest Small Town in Every State," used data from the U.S. Census Bureau's American Community Survey to determine the 50 richest small towns in America based on their median household income.

Of course, Houstonians realize that describing Bellaire as a "small town" is a bit of misnomer. Located less than 10 miles from downtown and fully surrounded by the City of Houston, Bellaire is a wealthy enclave that boasts a population of just over 17,000 residents. These affluent citizens earn a median $236,311 in income every year, which GoBankingRates says is the 11th highest household median income out of all 50 cities included in the report.

The average home in this city is worth over $1.12 million, but Bellaire's lavish residential reputation often attracts properties with multimillion-dollar price tags.

Bellaire also earned a shining 81 livability score for its top quality schools, health and safety, commute times, and more. The livability index, provided by Toronto, Canada-based data analytics and real estate platform AreaVibes, said Bellaire has "an abundance of exceptional local amenities."

"Among these are conveniently located grocery stores, charming coffee shops, diverse dining options and plenty of spacious parks," AreaVibes said. "These local amenities contribute significantly to its overall appeal, ensuring that [residents'] daily needs are met and offering ample opportunities for leisure and recreation."

Earlier in 2025, GoBankingRates ranked Bellaire as the No. 23 wealthiest suburb in America, and it's no stranger to being named on similar lists comparing the richest American cities.

---

This article originally appeared on CultureMap.com.

How a Houston startup is taking on corrosion, a costly climate threat

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

This article originally appeared on our sister site, EnergyCapitalHTX.com.

These 50+ Houston scientists rank among world’s most cited

science stars

Fifty-one scientists and professors from Houston-area universities and institutions were named among the most cited in the world for their research in medicine, materials sciences and an array of other fields.

The Clarivate Highly Cited Researchers considers researchers who have authored multiple "Highly Cited Papers" that rank in the top 1percent by citations for their fields in the Web of Science Core Collection. The final list is then determined by other quantitative and qualitative measures by Clarivate's judges to recognize "researchers whose exceptional and community-wide contributions shape the future of science, technology and academia globally."

This year, 6,868 individual researchers from 60 different countries were named to the list. About 38 percent of the researchers are based in the U.S., with China following in second place at about 20 percent.

However, the Chinese Academy of Sciences brought in the most entries, with 258 researchers recognized. Harvard University with 170 researchers and Stanford University with 141 rounded out the top 3.

Looking more locally, the University of Texas at Austin landed among the top 50 institutions for the first time this year, tying for 46th place with the Mayo Clinic and University of Minnesota Twin Cities, each with 27 researchers recognized.

Houston once again had a strong showing on the list, with MD Anderson leading the pack. Below is a list of the Houston-area highly cited researchers and their fields.

UT MD Anderson Cancer Center

  • Ajani Jaffer (Cross-Field)
  • James P. Allison (Cross-Field)
  • Maria E. Cabanillas (Cross-Field)
  • Boyi Gan (Molecular Biology and Genetics)
  • Maura L. Gillison (Cross-Field)
  • David Hong (Cross-Field)
  • Scott E. Kopetz (Clinical Medicine)
  • Pranavi Koppula (Cross-Field)
  • Guang Lei (Cross-Field)
  • Sattva S. Neelapu (Cross-Field)
  • Padmanee Sharma (Molecular Biology and Genetics)
  • Vivek Subbiah (Clinical Medicine)
  • Jennifer A. Wargo (Molecular Biology and Genetics)
  • William G. Wierda (Clinical Medicine)
  • Ignacio I. Wistuba (Clinical Medicine)
  • Yilei Zhang (Cross-Field)
  • Li Zhuang (Cross-Field)

Rice University

  • Pulickel M. Ajayan (Materials Science)
  • Pedro J. J. Alvarez (Environment and Ecology)
  • Neva C. Durand (Cross-Field)
  • Menachem Elimelech (Chemistry and Environment and Ecology)
  • Zhiwei Fang (Cross-Field)
  • Naomi J. Halas (Cross-Field)
  • Jun Lou (Materials Science)
  • Aditya D. Mohite (Cross-Field)
  • Peter Nordlander (Cross-Field)
  • Andreas S. Tolias (Cross-Field)
  • James M. Tour (Cross-Field)
  • Robert Vajtai (Cross-Field)
  • Haotian Wang (Chemistry and Materials Science)
  • Zhen-Yu Wu (Cross-Field)

Baylor College of Medicine

  • Nadim J. Ajami (Cross-Field)
  • Biykem Bozkurt (Clinical Medicine)
  • Hashem B. El-Serag (Clinical Medicine)
  • Matthew J. Ellis (Cross-Field)
  • Richard A. Gibbs (Cross-Field)
  • Peter H. Jones (Pharmacology and Toxicology)
  • Sanjay J. Mathew (Cross-Field)
  • Joseph F. Petrosino (Cross-Field)
  • Fritz J. Sedlazeck (Biology and Biochemistry)
  • James Versalovic (Cross-Field)

University of Houston

  • Zhifeng Ren (Cross-Field)
  • Yan Yao (Cross-Field)
  • Yufeng Zhao (Cross-Field)
  • UT Health Science Center Houston
  • Hongfang Liu (Cross-Field)
  • Louise D. McCullough (Cross-Field)
  • Claudio Soto (Cross-Field)

UTMB Galveston

  • Erez Lieberman Aiden (Cross-Field)
  • Pei-Yong Shi (Cross-Field)

Houston Methodist

  • Eamonn M. M. Quigley (Cross-Field)