Texas A&M University is planning a three-building project to bring parking, housing, retail, and more to the Texas Medical Center. Photo courtesy of Texas A&M University System

Texas A&M University has announced a new three-building project in the Texas Medical Center that will bring a renovated space for its Engineering Medicine program, student housing, parking, retail, and more.

The $546 million complex will be funded in part by a public-private partnership, according to a news release from the university. The project includes one 18-story building to be purchased and renovated for $145 million, and an additional $401 million will go toward constructing two new buildings.

"The Board of Regents of the Texas A&M University System recognized an opportunity in Houston to help Texans and contribute more to the global medical community," says Elaine Mendoza, chairman of the Board of Regents of the Texas A&M University System, in the news release. "We are eager and fortunate to further enhance the world's greatest medical center through this endeavor."

The first of the three buildings to debut will be the EnMed renovation project at 1020 Holcombe Blvd. This project, which had previously been announced, is expected to deliver by this summer and should be monumental for the already successful program, says Bob Harvey, president and CEO of the Greater Houston Partnership, in a statement.

"Texas A&M's EnMed program fits right into what we are doing in Houston," Harvey says. "Our city has long been recognized as a destination for world-class health care and cutting-edge research, thanks to the incredible institutions in the Texas Medical Center. Houston is also becoming known as an attractive location for both mature and emerging life science and biotech companies. We are, indeed, becoming the 'third coast' for life sciences."

A&M TMCThe first of the three buildings is expected to be complete this summer. Photo courtesy of Texas A&M University System

The two new construction buildings will be paid for through public-private partnerships. The student housing building, a 19-story building planned to have 572 units with 704 beds in a 365,000 square-foot space, will be completed by June 2022, according to the release. The building will also include a 3,444-spot parking garage. Students from A&M campuses will get priority housing, but students at other institutions will also be allowed spots if available.

"We saw a need for student housing and medical offices in Houston. Plus, our EnMed students needed the facilities to create the latest medical devices," says Greg Hartman, a vice chancellor at Texas A&M University System and interim senior vice president of the Texas A&M Health Science Center, in a news release. "So, we began the process of expanding the Texas A&M footprint in Houston and I believe the work done by Aggies in Houston will be life-changing for a lot of people."

The third component of the plans includes a 587,000-square-foot, 30-floor Integrated Medical Plaza — another public-private partnership — and it has a June 2023 expected completion. Thirteen of the stories will be parking, and 72,000 square feet of space will be for retail use, while 8,700 square feet will be green space.

According to the release, the developer for the two new construction projects is Houston-based Medistar Corp., which is run by CEO Monzer Hourani. New York-basedAmerican Triple I Partners is on the financing team and was founded by Henry Cisneros, a Texas A&M alumnus.

Representatives from both the school and the city see the potential impact of the complex for medical innovations.

"Last year, Houston had its best year ever in terms of attracting venture capital to the region," Harvey says in his statement on the news. "This program and this facility will provide one more reason for major VCs to give Houston's innovative companies a look – and for talented students, researchers, and entrepreneurs to make Houston their home."

Dr. M Katherine Banks, who serves the university of vice chancellor of engineering and national laboratories at the Texas A&M System, notes in the release how the EnMed program has set up its students for breakthrough medical device innovation.

"I expect to see transformative ideas generated by Texas A&M's broadened presence in Houston," says Dr. Banks in the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas university to lead new FAA tech center focused on drones

taking flight

The Texas A&M University System will run the Federal Aviation Administration’s new Center for Advanced Aviation Technologies, which will focus on innovations like commercial drones.

“Texas is the perfect place for our new Center for Advanced Aviation Technologies,” U.S. Transportation Secretary Sean Duffy said in a release. “From drones delivering your packages to powered lift technologies like air taxis, we are at the cusp of an aviation revolution. The [center] will ensure we make that dream a reality and unleash American innovation safely.”

U.S. Sen. Ted Cruz, a Texas Republican, included creation of the center in the FAA Reauthorization Act of 2024. The center will consist of an airspace laboratory, flight demonstration zones, and testing corridors.

Texas A&M University-Corpus Christi will lead the initiative, testing unstaffed aircraft systems and other advanced technologies. The Corpus Christi campus houses the Autonomy Research Institute, an FAA-designated test site. The new center will be at Texas A&M University-Fort Worth.

The College Station-based Texas A&M system says the center will “bring together” its 19 institutions, along with partners such as the University of North Texas in Denton and Southern Methodist University in University Park.

According to a Department of Transportation news release, the center will play “a pivotal role” in ensuring the safe operation of advanced aviation technologies in public airspace.

The Department of Transportation says it chose the Texas A&M system to manage the new center because of its:

  • Proximity to major international airports and the FAA’s regional headquarters in Fort Worth
  • Existing infrastructure for testing of advanced aviation technologies
  • Strong academic programs and industry partnerships

“I’m confident this new research and testing center will help the private sector create thousands of high-paying jobs and grow the Texas economy through billions in new investments,” Cruz said.

“This is a significant win for Texas that will impact communities across our state,” the senator added, “and I will continue to pursue policies that create new jobs, and ensure the Lone Star State continues to lead the way in innovation and the manufacturing of emerging aviation technologies.”

Texas Republicans are pushing to move NASA headquarters to Houston

space city

Two federal lawmakers from Texas are spearheading a campaign to relocate NASA’s headquarters from Washington, D.C., to the Johnson Space Center in Houston’s Clear Lake area. Houston faces competition on this front, though, as lawmakers from two other states are also vying for this NASA prize.

With NASA’s headquarters lease in D.C. set to end in 2028, U.S. Sen. Ted Cruz, a Texas Republican, and U.S. Rep. Brian Babin, a Republican whose congressional district includes the Johnson Space Center, recently wrote a letter to President Trump touting the Houston area as a prime location for NASA’s headquarters.

“A central location among NASA’s centers and the geographical center of the United States, Houston offers the ideal location for NASA to return to its core mission of space exploration and to do so at a substantially lower operating cost than in Washington, D.C.,” the letter states.

Cruz is chairman of the Senate Committee on Commerce, Science, and Transportation; and Babin is chairman of the House Committee on Science, Space, and Technology. Both committees deal with NASA matters. Twenty-five other federal lawmakers from Texas, all Republicans, signed the letter.

In the letter, legislators maintain that shifting NASA’s headquarters to the Houston area makes sense because “a seismic disconnect between NASA’s headquarters and its missions has opened the door to bureaucratic micromanagement and an erosion of [NASA] centers’ interdependence.”

Founded in 1961, the $1.5 billion, 1,620-acre Johnson Space Center hosts NASA’s mission control and astronaut training operations. More than 12,000 employees work at the 100-building complex.

According to the state comptroller, the center generates an annual economic impact of $4.7 billion for Texas, and directly and indirectly supports more than 52,000 public and private jobs.

In pitching the Johnson Space Center for NASA’s HQ, the letter points out that Texas is home to more than 2,000 aerospace, aviation, and defense-related companies. Among them are Elon Musk’s SpaceX, based in the newly established South Texas town of Starbase; Axiom Space and Intuitive Machines, both based in Houston; and Firefly Aerospace, based in the Austin suburb of Cedar Park.

The letter also notes the recent creation of the Texas Space Commission, which promotes innovation in the space and commercial aerospace sectors.

Furthermore, the letter cites Houston-area assets for NASA such as:

  • A strong business environment.
  • A low level of state government regulation.
  • A cost of living that’s half of what it is in the D.C. area.

“Moving the NASA headquarters to Texas will create more jobs, save taxpayer dollars, and reinvigorate America’s space agency,” the letter says.

Last November, NASA said it was hunting for about 375,000 to 525,000 square feet of office space in the D.C. area to house the agency’s headquarters workforce. About 2,500 people work at the agency’s main offices. NASA’s announcement set off a scramble among three states to lure the agency’s headquarters.

Aside from officials in Texas, politicians in Florida and Ohio are pressing NASA to move its headquarters to their states. Florida and Ohio both host major NASA facilities.

NASA might take a different approach, however. “NASA is weighing closing its headquarters and scattering responsibilities among the states, a move that has the potential to dilute its coordination and influence in Washington,” Politico reported in March.

Meanwhile, Congressional Delegate Eleanor Holmes Norton, a Democrat who represents D.C., introduced legislation in March that would prohibit relocating a federal agency’s headquarters (including NASA’s) away from the D.C. area without permission from Congress.

“Moving federal agencies is not about saving taxpayer money and will degrade the vital services provided to all Americans across the country,” Norton said in a news release. “In the 1990s, the Bureau of Land Management moved its wildfire staff out West, only to move them back when Congress demanded briefings on new wildfires.”

Houston research breakthrough could pave way for next-gen superconductors

Quantum Breakthrough

A study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.