Mayor Sylvester Turner, TMC CEO Bill McKeon, Governor Greg Abbott, and others gave their remarks at the TMC3 Collaborative Building opening. Photo by Natalie Harms

For nearly a decade, the Texas Medical Center and its partners have been working on the plans for Helix Park, a 37-acre campus expansion of TMC. As of this week, the first building has opened its doors to the public.

The TMC3 Collaborative Building officially opened today to a crowd of media, public officials, and health care executives. The institutional agnostic, 250,000-square-foot building will anchor Helix Park and house research initiatives from the four founding partners: Texas Medical Center, The University of Texas MD Anderson Cancer Center, Texas A&M University Health Science Center, and The University of Texas Health Science Center at Houston.

“Today, we lay the cornerstone of a new campus fully dedicated to streamlining the commercialization of life-changing innovations in medicine and technologies,” William McKeon, president and CEO of TMC, says at the event. “We are incredibly excited to both welcome our founding institutions and industry partners to the Collaborative Building and to invite the community to experience the Helix Park campus and its beautiful parks with a series of special events in the months ahead."

Established to be a place for academic institution collaboration, the building — designed by Boston-based Elkus Manfredi Architects — will have wet laboratories, office space, and event facilities. Two venture groups — Portal Innovations and the TMC Venture Fund — will also move into the building.

Each institution will bring in select programs and initiatives. MD Anderson will house two institutions within the new building, including the James P. Allison Institute focused on immunotherapy and the Institute for Data Science in Oncology.

"The future of life sciences in Houston is brighter than ever before as we come together to officially open the TMC3 Collaborative Building,” Dr. Peter WT Pisters, president of MD Anderson, says. “Our clinicians and scientists work daily to advance innovations in cancer research and care – all of which will be amplified in this new environment within Helix Park that further cultivates collaboration, connectivity, and creativity.”

UTHealth will move its Texas Therapeutics Institute into the facility.

“With a shared commitment to improving the health and well-being of individuals and communities, we are bringing together academics and industry to accelerate discovery and medical breakthroughs,” Dr. Giuseppe N. Colasurdo, president and Alkek-Williams Distinguished Chair at UTHealth Houston, says. “Through the Texas Therapeutics Institute — already a signature collaborative enterprise at UTHealth Houston — our world-renowned leaders in therapeutic antibody development will have the opportunity to work closely with other leading researchers in the Texas Medical Center, greatly enhancing our collective ability to translate discoveries and ideas into effective treatments.”

Texas A&M, which has worked with Houston Methodist to develop its engineering medical program, will operate its Texas A&M Health’s Institute of Biosciences and Technology in the new space.

“As we open this state-of-the-art facility, we’re opening the door to a new era of collaboration. This building signifies the dismantling of silos to deliver game-changing therapies for the toughest diseases impacting Texans and citizens worldwide,” said John Sharp, Chancellor of The Texas A&M University System. “Texas A&M Health’s Institute of Biosciences and Technology has long been a trailblazer in drug discovery, and now, in the heart of this resource-rich ecosystem of the Texas Medical Center, we’re taking it up a notch. By positioning our scientists near their peers and esteemed clinicians, we’re igniting a spark that will fuel innovation and forge dynamic research programs.”

The next aspect of Helix Park to deliver will be the Dynamic One, a 700,000-square-foot industry research facility. Several other buildings, including a hotel, residential tower, and mixed-use building, are expected to deliver over the next few years. The "spine" of the project is six linked green spaces, designed by landscape architect Mikyoung Kim, that form an 18.7-acre campus, which is shaped like a DNA helix, hence the project's name.

At the opening event, leaders discussed the annual impact of over $5.4 billion expected after the campus is completed, and the 23,000 permanent new jobs and 19,000 construction jobs anticipated from Helix Park.

"Texas truly is the home of innovation. Our energy innovations are legendary, as are our innovations in space," says Texas Governor Greg Abbott, naming several of the state's innovative accomplishments. "Long before all of this innovation we're seeing now, Texas was the home of the Texas Medical Center."

Mayor Sylvester Turner spoke to the importance of collaboration.

"Individually, you can do things very well. Collectively, you can be transformational," he says. "One thing about this city, collaboration is the key. When we play well together, and when we build an integrated, robust ecosystem, everyone wins. That's Houston, and that's the way we operate."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

Houston innovator drives collaboration, access to investment with female-focused group

HOUSTON INNOVATORS PODCAST EPISODE 262

After working in technology in her home country of Pakistan, Samina Farid, who was raised in the United States, found her way to Houston in the '70s where business was booming.

She was recruited to work at Houston Natural Gas — a company that would later merge and create Enron — where she rose through the ranks and oversaw systems development for the company before taking on a role running the pipelines.

"When you're in technology, you're always looking for inefficiencies, and you always see areas where you can improve," Farid says on the Houston Innovators Podcast, explaining that she moved on from Enron in the mid-'80s, which was an exciting time for the industry.

"We had these silos of data across the industry, and I felt like we needed to be communicating better, having a good source of data, and making sure we weren't continuing to have the problems we were having," she says. "That was really the seed that got me started in the idea of building a company."

She co-founded Merrick Systems, a software solutions business for managing oil and gas production, with her nephew, and thus began her own entrepreneurial journey. She came to another crossroads in her career after selling that business in 2014 and surviving her own battle with breast cancer.

"I got involved in investing because the guys used to talk about it — there was always men around me," Farid says. "I was curious."

In 2019, she joined an organization called Golden Seeds. Founded in 2005 in New York, the network of angel investors funding female-founded enterprises has grown to around 280 members across eight chapters. Suzan Deison, CEO of the Houston Women's Chamber, was integral in bringing the organization to Houston, and now Farid leads it as head of the Houston Chapter of Golden Seeds.

For Farid, the opportunity for Houston is the national network of investors — both to connect local female founders to potential capital from coast to coast and to give Houston investors deal flow from across the country.

"It was so hard for me to get funding for my own company," Farid says. "Having access to capital was only on the coasts. Software and startups was too risky."

Now, with Golden Seeds, the opportunity is there — and Farid says its an extremely collaborative investor network, working with local organizations like the Houston Angel Network and TiE Houston.

"With angel investing, when we put our money in, we want these companies to succeed," she says."We want more people to see these companies and to invest in them. We're not competing. We want to work with others to help these companies succeed."