Houston is primed to become an energy tech hub amid ongoing energy transition.

As the energy capital of the world, Houston has been a long-time leader in the energy industry, particularly oil and gas. With cutting-edge research and technological breakthroughs, unique talent of energy veterans and engineering know-how, the city is swiftly developing into a booming energy technology hub.

Houston’s R&D, talent pool, energy infrastructure, and favorable business environment is fostering the growth of technology-driven energy initiatives. These factors differentiate Houston's energy tech ecosystem from other tech hubs in the U.S., in similar ways to how Silicon Valley has been known for technology and software and Boston and New York for biotech and fintech ecosystems, respectively.

Primarily, Houston's proximity to major energy players has played a crucial role in its evolution as an energy technology hub. Around 34 percent of all publicly traded oil and gas companies in the U.S. are headquartered in the city. Even the energy companies that are headquartered outside of Houston (e.g., Exelon, Duke Energy, and NextEra Energy) have established their energy transition headquarters and plants/infrastructure here. This proximity enables energy technology startups easy access to market, expertise, resources, and funding, fostering a vibrant ecosystem that supports their growth.

Moreover, with an expanding network of academic and commercial R&D activity, the city has become a rising hub of technological development. It currently houses more than 21 business research centers focusing on various aspects related to energy transition through design, prototype, and applied intelligence studios.

For instance, the Greater Houston Partnership, a key organization in promoting Houston’s economic growth, has been actively involved in positioning the city as a leader in the global energy transition space. Some of the notable green energy startups leading Houston’s energy transition are Sunnova, Solugen, Fervo Energy, Syzygy Plasmonics, Ionada, and Energy Transition Ventures.

The emergence of startup development organizations throughout the city, including workplaces, incubators, and accelerators, in recent years has fostered collaboration among founders, investors, and talent, thereby accelerating the rate of business formation and growth. Accelerators and incubators such as Halliburton Labs, Greentown Labs, The Ion District, and Rice Alliance Clean Energy Accelerator are key supporters of innovation and entrepreneurship in Houston’s energy technology landscape.

In addition, government funding is catalyzing Houston’s growth in energy tech. Most prominently, the 2022 Inflation Reduction Act (IRA) is likely to stimulate greater investment in solar and wind energy, charging infrastructure, and electric vehicles in Houston. It will support the city’s R&D institutions and technology developers in pioneering energy transition for carbon capture, utilization and storage (CCS/CCUS), hydrogen, and renewable fuels, resulting in a 13-fold increase in capital expenditure for infrastructure between 2024 and 2035.

The Bipartisan Infrastructure Law and Advanced Research Projects Agency-Energy (ARPA-E) also focus on promoting and funding research and development of advanced energy technologies, many of which are coming out of Houston.

Further, Houston has a strong talent pool with a workforce of three million individuals and the fourth largest concentration of engineers in the US. In 2022, the growth rate of tech employment in the region was 3.5 percent while the national growth rate was 3.2 percent.

The energy industry, research institutions, and government are coming together in Houston to propel it to become a leader in energy technology. However, the city still has a ways to go: Houston needs to build more in non-traditional energy sectors (e.g. wind, solar, etc.), attract more entrepreneurs to start companies here, and get more investors to invest here. Having successful energy tech exits and reinvestment in new startups here would help.

Houston has tremendous potential to lead energy technology, and with the rapidly growing focus of research, businesses, and government policies on energy transition. The confluence of energy tech players coming together in Houston is driving its evolution as an energy tech hub, making it an exciting place for new technologies and businesses to develop and grow, and reinvest in Houston.

---

Michael Torosian is a partner in the corporate practice in the San Francisco office of Baker Botts. He is outside general counsel to emerging companies and their investors and advisors at all stages.

Only time will tell, but this expert believes the Inflation Reduction Act of 2022 will be a boon to energy tech startups in Texas. Photo via Getty Images

Expert: How recent inflation legislation could affect Texas energy startups, investors

guest column

The recently passed Inflation Reduction Act of 2022 includes $369 billion in investment in climate and energy policies, the largest investment in United States history to address climate change. The IRA could be a boon to Texas startups involved in clean energy, clean manufacturing and clean innovation.

Government policy and funding are critical to supporting the research and development for new technologies, which solve complex challenges and require significant upfront and long-term commitments of investment. Early government investment gives private investors more incentive to invest in the later commercialization and scaling of these businesses, and has a multiplier effect in accelerating the development, commercialization, and deployment of new technologies in the time needed in the market to capitalize on energy business opportunities and achieve climate goals.

The IRA’s biggest impact on climate tech businesses is through tax credits and direct investment. The IRA’s expanded tax credits will make it easier to fund and build projects, help reduce cost of construction, and help make renewable energy projects more competitive, encourage more funding and building of new projects, and bring new jobs and economic development. The IRA’s direct investments allow for companies developing new technologies to obtain grants and loans that help them develop their solutions while not diluting their investors, helping them build more value in their businesses and making them more attractive for later investment.

Texas is well positioned to be an energy transition and clean energy leader and beneficiary of the IRA. The state is home to major energy companies, and their technical expertise, know-how and experience in energy, and energy technology is unparalleled. There is huge momentum in innovation in energy transition and energy tech, and there is great research coming out of university and corporate R&D programs. For example, Texas is home to more than 20 energy-focused research and development centers and dozens of energy tech companies. And Texas is already the largest producer of wind power in the U.S.

Texas startups across industries were already attracting massive investment before the IRA became law. According to Pitchbook and the National Venture Capital Association, Texas startups overall raised a record-high $10.55 billion in venture capital in 2021, an increase of 123 percent from 2020’s $4.73 billion.

Early-stage investment in climate tech hit a record $53.7 billion in 2021. While the totals this year aren’t likely to reach 2021 levels, climate tech investors have said they aren’t seeing the size of pullbacks and slowdowns in other sectors. Despite the VC slowdown this year, clean tech and climate tech have remained attractive investments. This includes Texas. For example, the Rice Alliance Clean Energy Accelerator reported in August that 17 of its early- to mid-stage startups have already raised more than $54.5 million this year. Also in August, geothermal startup Fervo Energy, based in Houston, raised $138 million in new VC funding. Earlier in February, Houston’s Zeta Energy, which has developed a battery for the electric vehicle and energy storage markets, closed a $23 million financing round. We expect continued funding in this space.

Large corporates in Texas are building external innovation programs such as venture arms and accelerators. For instance, Houston’s Halliburton Company developed Halliburton Labs, an accelerator that has backed a number of startups in the carbon capture, clean hydrogen, and solar energy tech developers. Big energy companies are also joining Texas-based accelerator hubs such as The Ion in Houston. The Ion’s founding partners include Aramco Americas, Chevron Technology Ventures, and ExxonMobil.

It will require long term efforts to achieve results in climate tech and clean energy projects, but as the benefits of the IRA materialize, more startups in Texas will have the ability to obtain more long-term financial support and resources from all of the sources – government, universities, and research organizations, venture investors and corporations — that are required to develop solutions to the energy and climate challenges and capitalize on the business opportunities of today and tomorrow. Startups are creating transformative innovations that are key to the United States being a leader in clean energy and fighting climate change. And there’s no better place to do that than in Texas.

------

Michael Torosian is a partner in the corporate practice in the San Francisco office of Baker Botts. He is outside general counsel to emerging companies and their investors and advisors at all stages.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”