Roughly half of the 2024 fundraising total for Houston-area startups came in the fourth quarter. Photo via Getty Images

The venture capital haul for Houston-area startups jumped 23 percent from 2023 to 2024, according to the latest PitchBook-NVCA Venture Monitor.

The fundraising total for startups in the region climbed from $1.49 billion in 2023 to $1.83 billion in 2024, PitchBook-NVCA Venture Monitor data shows.

Roughly half of the 2024 sum, $914.3 million, came in the fourth quarter. By comparison, Houston-area startups collected $291.3 million in VC during the fourth quarter of 2023.

Among the Houston-area startups contributing to the impressive VC total in the fourth quarter of 2024 was geothermal energy startup Fervo Energy. PitchBook attributes $634 million in fourth-quarter VC to Fervo, with fulfillment services company Cart.com at $50 million, and chemical manufacturing platform Mstack and superconducting wire manufacturer MetOx International at $40 million each.

Across the country, VC deals total $209 billion in 2024, compared with $162.2 billion in 2023. Nearly half (46 percent) of all VC funding in North America last year went to AI startups, PitchBook says. PitchBook’s lead VC analyst for the U.S., Kyle Stanford, says that AI “continues to be the story of the market.”

PitchBook forecasts a “moderately positive” 2025 for venture capital in the U.S.

“That does not mean that challenges are gone. Flat and down rounds will likely continue at higher paces than the market is accustomed to. More companies will likely shut down or fall out of the venture funding cycle,” says PitchBook. “However, both of those expectations are holdovers from 2021.”

A Houston company has raised funding. Photo via Getty Images

Houston superconductor tech manufacturer raises $25M

fresh funding

A Houston company has closed its series B extension at $25 million.

MetOx International, which develops and manufactures high-temperature superconducting (HTS) wire, announced it closed a $25 million series B extension. Centaurus Capital, an energy-focused family office, and New System Ventures, a climate and energy transition-focused venture firm, led the round with participation from other investors.

"MetOx has developed a robust and highly scalable operation, and we are thrilled to partner with the Company as it enters this pivotal growth stage," says John Arnold, founder of Centaurus, in a news release. "The market for HTS is expanding at an unprecedented pace, with demand for HTS far outweighing supply. MetOx is poised to be the leading U.S. HTS producer, closing the supply gap and bringing dramatic capacity to high power innovations and applications. Their progress and potential are unmatched in the field, and we are proud to support their growth."

The fresh funding will go toward advancing the company's Xeus HTS wire technology for key energy transition applications by expanding MetOx's U.S.-based manufacturing capabilities to meet demand.

"This funding marks a pivotal step in our mission to revolutionize the energy and technology sectors with our advanced power delivery technology and accelerate delivery for our customers and partners. HTS is critical to enhancing the efficiency of our electric grid and enabling technological developments that, in many cases, would not be viable or even possible without superconductor technology," adds Bud Vos, CEO of MetOx. "Support from investors such as Centaurus and NSV not only provides the financial resources and strategic support required for accelerated scaleup, but also validates the broad reach of our technology across energy, data center, medical, and defense industries."

HTS wire technology is critical for the energy transition, especially amid rising data center growth, and for next generation wind turbines and interconnections.

MetOx's technology originated out of the University of Houston and was founded in 1998 by Alex Ignatiev, UH professor emeritus of physics and a fellow of the National Academy of Inventors. Last year, the company secured $3 million in funding from the U.S. Department of Energy to support the advancement of its proprietary manufacturing technology for its HTS wire.

"MetOx's HTS technology aligns with our systems-level research and offers a unique opportunity to dramatically accelerate the energy transition," says Ian Samuels, founder and managing partner at NSV. "MetOx's Xeus wire stands to be a force multiplier in clean energy generation and high-power transmission and distribution, enabling load growth and the deployment of power-dense data centers. NSV is excited to support MetOx as it scales domestic manufacturing capacity."

The fresh funding will go toward advancing the company's Xeus HTS wire technology. Photo via metoxtech.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.