Optellum, which has its United States operations based in the TMC Innovation Institute, has raised fresh funding. Photo via Getty Images

A Oxford-based health tech startup that has its United States headquarters in Houston has announced the close of its series A round of funding.

Optellum, which has created a breakthrough AI platform to diagnose and treat early-stage lung cancer, has raised $14 million in a series A funding round. The round was led by United Kingdom-based Mercia, with additional investors California-based Intuitive Ventures and New York-based Black Opal Ventures. Existing investors, including St John's College in the University of Oxford, IQ Capital, and the family office of Sir Martin & Lady Audrey Wood, also participated in the round, per a news release.

"Lung cancer is an urgent public health crisis and Optellum's groundbreaking approach utilizing AI to accelerate early detection and intervention may fundamentally alter the healthcare community's approach to combating this disease," says Dr. Oliver Keown, managing director of Intuitive Ventures, in the release. "Optellum is uniquely positioned to align and provide considerable value to patients, providers, and payers alike. Intuitive Ventures is thrilled to provide our full arsenal of financial and strategic support to Optellum as we work towards a world of better outcomes for cancer patients."

The fresh funding will go toward scaling Optellum's operations and commercial launches in the United Kingdom and in the United States. Additionally, the company plans to expand its platform, including providing personalized therapy support using imaging data with molecular data, robotics, and liquid biopsies.

"With this strong support and commitment of highly specialized investors, we are positioned to accelerate commercial deployment in both the UK and the United States to expand our installed base," says Jason Pesterfield, CEO at Optellum, in the release. "Following years of research and clinical trials that have shown the impact of our software on the diagnosis of at-risk lung nodules, we're focused on expanding patient access to this crucial technology and identifying deadly lung cancer faster in more at-risk people. The funding will also boost our research and development with world-leading institutions and partners to progress further innovation."

Optellum's software provides support for physicians making decisions in early lung cancer diagnosis and treatment. The company was launched to provide better diagnostics and early-stage treatment to increase survival rates and improve health outcomes.

Last year, Optellum — whose U.S. headquarters is at Houston's TMC Innovation Institute — announced it would be included in J&J's Lung Cancer Initiative. The startup was a 2019 graduate of the Texas Medical Center's accelerator and its software platform, Virtual Nodule Clinic, received FDA clearance, CE-MDR in the EU, and UKCA in the UK.

"Optellum is the latest in a series of companies to channel research from the UK's world-leading universities into commercially viable products that can make a difference to the provision of medical care," says Mercia Investment Director Stephen Johnson in the release. "Having observed Optellum achieve great milestones over the years, we are now excited to become part of their success and apply our experience with scaling up software and deep-tech companies to help accelerate Optellum's impact on patient lives across the world."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.