Optellum, which has its United States operations based in the TMC Innovation Institute, has raised fresh funding. Photo via Getty Images

A Oxford-based health tech startup that has its United States headquarters in Houston has announced the close of its series A round of funding.

Optellum, which has created a breakthrough AI platform to diagnose and treat early-stage lung cancer, has raised $14 million in a series A funding round. The round was led by United Kingdom-based Mercia, with additional investors California-based Intuitive Ventures and New York-based Black Opal Ventures. Existing investors, including St John's College in the University of Oxford, IQ Capital, and the family office of Sir Martin & Lady Audrey Wood, also participated in the round, per a news release.

"Lung cancer is an urgent public health crisis and Optellum's groundbreaking approach utilizing AI to accelerate early detection and intervention may fundamentally alter the healthcare community's approach to combating this disease," says Dr. Oliver Keown, managing director of Intuitive Ventures, in the release. "Optellum is uniquely positioned to align and provide considerable value to patients, providers, and payers alike. Intuitive Ventures is thrilled to provide our full arsenal of financial and strategic support to Optellum as we work towards a world of better outcomes for cancer patients."

The fresh funding will go toward scaling Optellum's operations and commercial launches in the United Kingdom and in the United States. Additionally, the company plans to expand its platform, including providing personalized therapy support using imaging data with molecular data, robotics, and liquid biopsies.

"With this strong support and commitment of highly specialized investors, we are positioned to accelerate commercial deployment in both the UK and the United States to expand our installed base," says Jason Pesterfield, CEO at Optellum, in the release. "Following years of research and clinical trials that have shown the impact of our software on the diagnosis of at-risk lung nodules, we're focused on expanding patient access to this crucial technology and identifying deadly lung cancer faster in more at-risk people. The funding will also boost our research and development with world-leading institutions and partners to progress further innovation."

Optellum's software provides support for physicians making decisions in early lung cancer diagnosis and treatment. The company was launched to provide better diagnostics and early-stage treatment to increase survival rates and improve health outcomes.

Last year, Optellum — whose U.S. headquarters is at Houston's TMC Innovation Institute — announced it would be included in J&J's Lung Cancer Initiative. The startup was a 2019 graduate of the Texas Medical Center's accelerator and its software platform, Virtual Nodule Clinic, received FDA clearance, CE-MDR in the EU, and UKCA in the UK.

"Optellum is the latest in a series of companies to channel research from the UK's world-leading universities into commercially viable products that can make a difference to the provision of medical care," says Mercia Investment Director Stephen Johnson in the release. "Having observed Optellum achieve great milestones over the years, we are now excited to become part of their success and apply our experience with scaling up software and deep-tech companies to help accelerate Optellum's impact on patient lives across the world."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

Houston physicist scores $15.5M grant for high-energy nuclear physics research

FUTURE OF PHYSICS

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.