Mario Romero is an engineer for Intuitive Machines and a former Navy SEAL. He credits his successes in STEM to second—and third—chances. Photo via LinkedIn

Mario Romero is an assembly, integration, and test engineer at the innovative Houston aerospace company Intuitive Machines. He previously served as a Navy SEAL and an EVA Flight Simulator Specialist at NASA.

Intuitive Machines landed its IM-2 mission on the moon last month, before calling an early end of mission. The company reported that its lunar lander was on its side, preventing it from completing the mission as planned.

Still, the IM-2 mission landed closer to the lunar South Pole than any previous lander, according to NASA. And the company still has plenty of innovative projects in the works.

The company secured about $2.5 million from NASA to study challenges related to carrying cargo on the company’s lunar lander and hauling cargo on the moon. The lander will be used for NASA’s Artemis missions to the moon and eventually to Mars.

“Someone has to do it; in fact, the more the merrier,” Romero says on being part of an innovative culture.

“Competition forces innovation, and if I can be selfish for a moment, I think it’s of particular importance for Intuitive Machines because my extremely capable team is more than worthy of having their place stamped in history. We, as a species, have to strive to become a multiplanetary species. Incidentally, part of the trickle-down effect of innovation often leads to spin-off technology that in some way benefits humanity here on Earth.”

Last year, Romero was awarded the key to the city from his hometown of Vineland, New Jersey, and made it a point in his speech to give kids a chance to succeed in the future.

“I am the product of many chances, secondary, tertiary, and more, given to me,” Romero says. “Many of these were admittedly entirely undeserving. I look back now and recognize that those teachers, judges, police, etc. might have all seen something in me that I couldn’t then see in myself. … This is precisely why I often emphasize giving kids multiple chances. Kids are kids, and you can never fully know how you’re inspiring them in the moment, nor how the chances that you give them will affect the trajectory of their lives.”

Texas is expected to represent nearly 10 percent of future STEM opportunities in the nation, and nine of the 20 biggest employers in Texas are STEM-related.

As STEM has become increasingly popular in high schools and at the university level, and the aerospace industry continues to innovate, it is possible that many young future innovators may take the same path a young Romero did.

“I think it’s natural that when new leaps are made in the STEM fields, and in the aerospace realm at large, the youth in general become galvanized by it,” Romero says.

“It’s exciting and reinvigorating to understand that humanity is on the cusp of the next great adventure. As fantastic and essential as this is, I want to emphasize the importance of the arts as well. It has an important place and an important role to play in our evolution, so I personally don’t limit youthful interest to STEM alone. There are fantastic works of art awaiting us, in all their variety, that will come as a result of the efforts and innovation.”

Intuitive Machines will study challenges related to carrying cargo on its lunar lander and hauling cargo on the moon. Photo courtesy of NASA

Houston space company lands latest NASA deal to advance lunar logistics

To The Moon

Houston-based space exploration, infrastructure, and services company Intuitive Machines has secured about $2.5 million from NASA to study challenges related to carrying cargo on the company’s lunar lander and hauling cargo on the moon. The lander will be used for NASA’s Artemis missions to the moon and eventually to Mars.

“Intuitive Machines has been methodically working on executing lunar delivery, data transmission, and infrastructure service missions, making us uniquely positioned to provide strategies and concepts that may shape lunar logistics and mobility solutions for the Artemis generation,” Intuitive Machines CEO Steve Altemus says in a news release.

“We look forward to bringing our proven expertise together to deliver innovative solutions that establish capabilities on the [moon] and place deeper exploration within reach.”

Intuitive Machines will soon launch its lunar lander on a SpaceX Falcon 9 rocket to deliver NASA technology and science projects, along with commercial payloads, to the moon’s Mons Mouton plateau. Lift-off will happen at NASA’s Kennedy Space Center in Florida within a launch window that starts in late February. It’ll be the lander’s second trip to the moon.

In September, Intuitive Machines landed a deal with NASA that could be worth more than $4.8 billion.

Under the contract, Intuitive Machines will supply communication and navigation services for missions in the “near space” region, which extends from the earth’s surface to beyond the moon.

The five-year deal includes an option to add five years to the contract. The initial round of NASA funding runs through September 2029.

A new study on Mars is shining a light on the Earth's own climate mysteries. Image via UH.edu

Houston scientists create first profile of Mars’ radiant energy budget, revealing climate insights on Earth

RESEARCH FINDINGS

Scientists at the University of Houston have found a new understanding of climate and weather on Mars.

The study, which was published in a new paper in AGU Advances and will be featured in AGU’s science magazine EOS, generated the first meridional profile of Mars’ radiant energy budget (REB). REB represents the balance or imbalance between absorbed solar energy and emitted thermal energy across latitudes. An energy surplus can lead to global warming, and a deficit results in global cooling, which helps provide insights to Earth's atmospheric processes too. The profile of Mars’ REB influences weather and climate patterns.

The study was led by Larry Guan, a graduate student in the Department of Physics at UH's College of Natural Sciences and Mathematics under the guidance of his advisors Professor Liming Li from the Department of Physics and Professor Xun Jiang from the Department of Earth and Atmospheric Sciences and other planetary scientists. UH graduate students Ellen Creecy and Xinyue Wang, renowned planetary scientists Germán Martínez, Ph.D. (Houston’s Lunar and Planetary Institute), Anthony Toigo, Ph.D. (Johns Hopkins University) and Mark Richardson, Ph.D. (Aeolis Research), and Prof. Agustín Sánchez-Lavega (Universidad del País, Vasco, Spain) and Prof. Yeon Joo Lee (Institute for Basic Science, South Korea) also assisted in the project.

The profile of Mars’ REB is based on long-term observations from orbiting spacecraft. It offers a detailed comparison of Mars’ REB to that of Earth, which has shown differences in the way each planet receives and radiates energy. Earth shows an energy surplus in the tropics and a deficit in the polar regions, while Mars exhibits opposite behavioral patterns.

The surplus is evident in Mars’ southern hemisphere during spring, which plays a role in driving the planet’s atmospheric circulation and triggering the most prominent feature of weather on the planet, global dust storms. The storms can envelop the entire planet, alter the distribution of energy, and provide a dynamic element that affects Mars’ weather patterns and climate.

The research team is currently examining long-term energy imbalances on Mars and how it influences the planet’s climate.

“The REB difference between the two planets is truly fascinating, so continued monitoring will deepen our understanding of Mars’ climate dynamics,” Li says in a news release.

The global-scale energy imbalance on Earth was recently discovered, and it contributes to global warming at a “magnitude comparable to that caused by increasing greenhouse gases,” according to the study. Mars has an environment that differs due to its thinner atmosphere and lack of anthropogenic effects.

“The work in establishing Mars’ first meridional radiant energy budget profile is noteworthy,” Guan adds. “Understanding Earth’s large-scale climate and atmospheric circulation relies heavily on REB profiles, so having one for Mars allows critical climatological comparisons and lays the groundwork for Martian meteorology.”

------

This article originally ran on EnergyCapital.

Kristen Magas, Anderson Wilder, Obaid Alsuwaidi, and Tiffany Snyder (from left to right) will live in a Mars simulation for 45 days. Photos courtesy of NASA

NASA taps 4 participants for Mars habitat simulation mission in Houston

suiting up

Four individuals have been selected to go to Mars. Well, sort of.

Obaid Alsuwaidi, Kristen Magas, Tiffany Snyder, and Anderson Wilder were picked by NASA to live for 45 days in a 650-square-foot Mars simulation located at Johnson Space Center in Houston. The participants will enter the Human Exploration Research Analog, or HERA, on Friday, November 1, and will live and work like astronauts until Monday, December 16.

Jordan Hundley and Robert Wilson also were named as alternate crew members.

"Scientists use HERA studies to examine how crew members adapt to isolation, confinement, and remote conditions before NASA sends astronauts on deep space missions to the Moon, Mars, and beyond," reads NASA's announcement. "The studies provide data about human health and performance in an enclosed environment over time with crews facing different challenges and tasks."

In the experiment, the participants will complete research and operational duties, including raising shrimp, farming, and completing virtual reality-simulated walks on Mars. In addition to these tasks, the crew will experience communication delays similar to ones astronauts will face on future missions to Mars and beyond, which could be as long as 20 minutes each way.

Through NASA’s Human Research Program, the crew members will participate in 18 human health studies focused on physiological, behavioral, and psychological health during the mission.

Here's a little more about each of the crew members:

  • As captain engineer for the United Arab Emirates’ Ministry of Defense, Obaid Alsuwaidi, provides guidance in civil and marine engineering and addresses challenges facing the organization.
  • Kristen Magas, an educator and engineer currently teaching at Tri-County Regional Vocational Technical High School in Franklin, Massachusetts, mentors students involved in a NASA design and prototyping program.
  • With more than 20 years of information technology and cybersecurity experience, Tiffany Snyder is a supervisor for the Cybersecurity Mission Integration Office at NASA, helping to ensure agency missions are shielded against cybersecurity threats.
  • Currently researching team resiliency and human-machine interactions, Anderson Wilder is a Florida Institute of Technology graduate student working on his doctorate in Psychology and previously served as an executive officer and engineer for an analog mission at the Mars Desert Research Station in Utah.
  • Jordan Hundley (alternate) is a senior consultant at a professional services firm, offering federal agencies technical and programmatic support.
  • Robert Wilson (alternate) is a senior researcher and project manager at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.
Perseverance has landed on Mars. Illustration courtesy of NASA

NASA and Johnson Space Center celebrate unprecedented Mars Perseverance landing

Mars landing

While Houston is in the depths of a historic freeze, some spacey locals are celebrating a major cosmic milestone. NASA — and Johnson Space Center, locally — are toasting the landing of Perseverance, the amiable roving vehicle, on Mars.

The reliable rover, nicknamed "Percy," touched down on the rocky Red Planet at approximately 2:55 pm Houston time on Thursday, February 18, to cheers at JSC and at NASA's Jet Propulsion Laboratory in Southern California, which is spearheading the mission.

In a harrowing descent, described by NASA tech crews as "seven minutes of terror," the rover plunged through the thin Martian atmosphere at more than 12,000 mph. A 70-foot parachute and powered descent slowed the rover to about 2 mph before a "sky crane maneuver," and soft landing at Mars' Jezero Crater.

Importantly, the intrepid Perseverance is carrying the Ingenuity Mars Helicopter – that will attempt the first powered, controlled flight on another planet. Aside from undertaking crucial experiments and sample collections, the first order of business is ensuring that Perseverance is "healthy," said NASA Perseverance staffer, Jessica Samuels, on NASA TV.

"If there's one thing we know, it's that landing on Mars is never easy," said NASA associate administrator for Communications Marc Etkind, in a statement. "But as NASA's fifth Mars rover, Perseverance has an extraordinary engineering pedigree and mission team. We are excited to invite the entire world to share this exciting event with us!"

Proud, starry-eyed Houstonians can watch the developments live on NASA TV online.

------

This article originally ran on CultureMap.

A Rice University scientist will be working on the team for NASA's latest Mars rover. Image courtesy of NASA/JPL-Caltech

Rice scientist tapped by NASA for Mars mission

robo-naut

A Rice University Martian geologist has been chosen by NASA as one of the 13 scientists who will be working on a new Mars rover.

Perseverance, the rover that launched in July and is expected to land on Mars in February. It will be scouting for samples to bring back to study for ancient microbial life, and Kirsten Siebach — an assistant professor of Earth, Environmental and Planetary Sciences — will be among the researchers to work on the project. Her proposal was one of 119 submitted to NASA for funding, according to a Rice press release.

"Everybody selected to be on the team is expected to put some time into general operations as well as accomplishing their own research," she says in the release. "My co-investigators here at Rice and I will do research to understand the origin of the rocks Perseverance observes, and I will also participate in operating the rover."

It's Kirsten Siebach's second Mars rover mission to work on. Photo courtesy of Rice University

Perseverance is headed for Jezero Crater, a 28-mile-wide area that once hosted a lake and river delta where, according to scientists, microbial life may have existed over 3 billion years ago. Siebach is particularly excited hopefully find fossils existing in atmospheric carbon dioxide dissolved in water — which usually exists as limestone on Earth.

"There are huge packages of limestone all over Earth, but for some reason it's extremely rare on Mars," she says. "This particular landing site includes one of the few orbital detections of carbonate and it appears to have a couple of different units including carbonates within this lake deposit. The carbonates will be a highlight of we're looking for, but we're interested in basically all types of minerals."

Siebach is familiar with rovers — she was a member of the team for NASA's Curiosity rover, which has been exploring Mars since 2012. For this new rover, Siebach knows what to expect.

"Because there is only one rover, the whole team at NASA has to agree about what to look at, or analyze, or where to drive on any given day," Siebach says in the release. "None of the rovers' actions are unilateral decisions. But it is a privilege to be part of the discussion and to get to argue for observations of rocks that will be important to our understanding of Mars for decades."

Siebach and her team — which includes Rice data scientist Yueyang Jiang and mineralogist Gelu Costin — are planning to tap into computational and machine-learning methods to map out minerals and discover evidence for former life on Mars. They will also be using a Planetary Instrument for X-ray Lithochemistry, or PIXL, to analyze the materials.

The return mission isn't expected to return until the early 2030s, so it's a long game for the scientists. However, the samples have the potential to revolutionize what we know about life on Mars with more context than before.

"Occasionally, something hits Mars hard enough to knock a meteorite out, and it lands on Earth," she says in the release. "We have a few of those. But we've never been able to select where a sample came from and to understand its geologic context. So these samples will be revolutionary."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

8+ can't-miss Houston business and innovation events in January

where to be

Editor's note: Kick off 2026 by hearing insightful talks and making meaningful connections in Houston's innovation scene. From networking workshops to presentations from major industry leaders, here's what not to miss and how to register. Please note: this article may be updated to include additional event listings.

Jan. 13 – Financing the Future

Hear from James Blake, head of capital markets at Fervo Energy, in this informative talk. Blake will cover the current investment landscape for geothermal power, how geothermal projects are structured and the role of policy incentives and innovative financing models in moving the industry forward. A small reception follows.

This event is Tuesday, Jan. 13, from 5:30-7:30 p.m. at the Ion. Register here.

Jan. 13 – Your Path to the Boardroom

Visit Sesh Coworking to hear from Keith Dorsey, an executive advisor and author of The Boardroom Journey, as he shares insights and lessons from hundreds of corporate board members and presents an actionable roadmap for women at every stage of their careers. Dorsey will speak on what "optimal diversity” means in the boardroom, how purpose-driven leaders sustain resilience under relentless pressure and why inclusive leadership is non-negotiable for growth and innovation.

This event is Tuesday, Jan. 13, from 6-8 p.m. at Sesh Coworking. Register here.

Jan. 14 — A Conversation with Dr. Wayne J. Riley on Leading Through Healthcare Transformation

Rice Business Partners will host Dr. Wayne J. Riley, president of SUNY Downstate Health Sciences University, for a moderated discussion with Dean Peter Rodriguez. Riley will share insights on leading complex healthcare organizations in an era of unprecedented industry challenges and reflect on his time at the Jones Graduate School of Business.

This event is Wednesday, Jan. 14, from 6:30-8:30 p.m. at McNair Hall on Rice University's campus. Register here.

Jan. 14 — VDW: Igniting Connections for Startup Success

Entrepreneurial communications instructor Diana Massaro will lead Lilie's latest Venture Development Workshop, focused on soft skills like clear communication, active listening and compelling introductions. Attendees will gain a personalized networking game plan and communication tools to turn casual encounters into meaningful relationships to support their ventures or careers.

This event is Wednesday, Jan. 14, from 6-7:30 p.m. at the Liu Idea Lab for Innovation and Entrepreneurship on Rice University's campus. Register here.

Jan. 21 — Upstream: Digital Tech Meetup

This month's Upstream: Digital Tech Meetup will explore how AI and real-time monitoring are being applied in safety-critical offshore environments, what’s working today, where the biggest gaps remain going into 2026 and how operators and service companies are approaching adoption. Expect to hear from leaders at NOV, Incom Solutions, Timbergrove and others.

This event is Wednesday, Jan. 21, from 8:30-10:30 a.m. at the Ion. Find more information here.

Jan. 22 — HEAD AND HEART: Leading Technology with Humanity While Everything Changes

Hear from Chris Hyams, former CEO of Indeed, at the latest installment of Rice's Master of Engineering Management & Leadership Seminar Series. Hyams will present on the intersection of technology, humanity and change—and how AI is reshaping all three.

This event is Thursday, Jan. 22, at 6 p.m. at Duncan Hall on Rice University's campus. Find more information here.

Jan. 22 – NASA Tech Talk

This month's NASA Tech Talks will feature a special delegation from the UK Science and Technology Network. Expect to hear from a panel of UK space experts, followed by a fireside chat featuring David Alexander, head of the Rice Space Institute, and Meganne Christian, ESA reserve astronaut and senior exploration manager.

This event is Thursday, Jan. 22, from 6-7 p.m. at the Ion. Find more information here.

Jan. 29 – Ignition Hub Startup Career Fair

Lilie will host the Ignition Hub Startup Career Fair this month in partnership with Rice University’s Center for Career Development and Career Development Office. The fair will bring together some of the most innovative, high-growth companies to offer Rice students exciting opportunities. Startups can apply to be considered for the fair. The event is open to Rice University undergraduate, graduate, MBA, and PhD students.

This event is Thursday, Jan. 29, at Grand Hall on Rice University's campus. Find more information here.

Jan. 29 – Health Policy Symposium: Value-Based Care & the Health Care Workforce

The Humana Integrated Health Systems Science Institute at the University of Houston will host its latest Health Policy Symposium this month, focused on the evolving landscape of value-based care and the importance of preparing and strengthening the health care workforce. Hear keynote addresses from leaders at Humana, UH, the American Medical Association and Houston Health Department.

This event is Thursday, Jan. 29, from 11:30 a.m.-1:30 p.m. at the Tilman J. Fertitta Family College of Medicine on Rice University's campus. Find more information here.

Jan. 30 — GHP Annual Meeting

The Greater Houston Partnership's premier event will highlight the region’s progress, honor visionary leadership and set the tone for the year ahead. Hear reflections from outgoing board chair, Gretchen Watkins (former -president of Shell USA); welcome incoming board chair, Armando Perez (EVP of H-E-B Houston); and more

This event is Friday, Jan. 30, from 11:30 a.m.-1:30 p.m. at Hilton Americas. Find more information here.

CPRIT CEO: Houston’s $2B in funding is transforming cancer research and prevention

fighting cancer

With its plethora of prestigious health care organizations like the University of Texas MD Anderson Cancer Center, UTHealth Houston, and the Baylor College of Medicine, Houston sits at the heart of cancer research and prevention in Texas.

Of course, it takes piles of cash to support Houston’s status as the state’s hub for cancer research and prevention. Much of that money comes from the Cancer Prevention and Research Institute of Texas (CPRIT).

Data supplied by CPRIT shows organizations in Harris County gained $2.3 billion in institute funding from 2009 through 2025, or nearly $145 million per year. That represents almost 60 percent of the roughly $4 billion that CPRIT has granted to Texas institutions over a 16-year period.

“The life sciences ecosystem that has developed and changed in Houston is phenomenal,” Kristen Doyle, who became the agency’s CEO in July 2024, tells InnovationMap. “In the next decade, we will look back and see a great transformation.”

That ecosystem includes more than 1,100 life sciences and biotech companies, according to the Greater Houston Partnership.

Houston plays critical role in clinical trials

Texas voters approved the creation of CPRIT in 2007. Twelve years later, voters agreed to earmark an extra $3 billion for CPRIT, bringing the state agency’s total investment in cancer research and prevention to $6 billion.

To date, CPRIT money has gone toward recruiting 344 cancer researchers to Texas (mainly to Houston) and has supported cancer prevention services for millions of Texans in the state’s 254 counties. CPRIT funding has also helped establish, expand, or relocate 25 cancer-focused companies. In Houston, MD Anderson ranks as the No. 1 recipient of CPRIT funding.

Regarding cancer research, Doyle says Houston plays a critical role in clinical trials.

“[Clinical trials are] something that CPRIT has focused on more and more. Brilliant discoveries are crucial to this whole equation of solving the cancer problem,” Doyle says. “But if those brilliant ideas stay in the labs, then we’ve all failed.”

Researchers conduct more clinical trials in Houston than anywhere else in the U.S., the Greater Houston Partnership says.

Doyle, a 20-year survivor of leukemia, notes that a minority of eligible patients participate in clinical trials for cancer treatments, “and that’s one of the reasons that it takes so long to get a promising drug to market.”

An estimated 7 percent of cancer patients sign up for clinical trials, according to a study published in 2024 in the Journal of Clinical Oncology.

MD Anderson takes on cancer prevention

Doyle also notes that Houston is leading the charge in cancer prevention.

“We get some national recognition for programs that have been developed in Houston that then can be replicated in other parts of the country,” she says.

Much of the work in Houston focusing on cancer prevention takes place at MD Anderson. The hospital reports that it has received more than $725 million from the CPRIT since 2007, representing approximately 18 percent of CPRIT’s total awards.

“These efforts can have profound impact on the lives of patients and their families, and this funding ensures our exemplary clinicians and scientists can continue working together to drive breakthroughs that advance our mission to end cancer,” Dr. Giulio Draetta, chief scientific officer at MD Anderson, said in a November news release, following the most recent CPRIT award for the hospital totaling more than $29 million.

CPRIT funding for Houston institutions supplements the more than $4.5 billion in federal funding for health and life sciences research and innovations that the Houston area received from 2020 to 2024, according to the Greater Houston Partnership.

“We are curing cancer every single day,” Doyle says of CPRIT. “Every step that we are taking — whether that’s funding great ideas or funding the clinical trials that are bringing promising drugs to Texas and to the world — we are making a difference.”

Houston energy tech co. breaks ground on low-cost hydrogen pilot plant

Coming Soon

Houston’s Lummus Technology and Advanced Ionics have broken ground on their hydrogen pilot plant at Lummus’ R&D facility in Pasadena, Texas.

The plant will support Advanced Ionics’ cutting-edge electrolyzer technology, which aims to deliver high-efficiency hydrogen production with reduced energy requirements.

“By demonstrating Advanced Ionics’ technology at our state-of-the-art R&D facility, we are leveraging the expertise of our scientists and R&D team, plus our proven track record of developing breakthrough technologies,” Leon de Bruyn, president and CEO of Lummus, said in a news release. “This will help us accelerate commercialization of the technology and deliver scalable, cost-effective and sustainable green hydrogen solutions to our customers.”

Advanced Ionics is a Milwaukee-based low-cost green hydrogen technology provider. Its electrolyzer converts process and waste heat into green hydrogen for less than a dollar per kilogram, according to the company. The platform's users include industrial hydrogen producers looking to optimize sustainability at an affordable cost.

Lummus, a global energy technology company, will operate the Advanced Ionics electrolyzer and manage the balance of plant systems.

In 2024, Lummus and Advanced Ionics established their partnership to help advance the production of cost-effective and sustainable hydrogen technology. Lummus Venture Capital also invested an undisclosed amount into Advanced Ionics at the time.

“Our collaboration with Lummus demonstrates the power of partnerships in driving the energy transition forward,” Ignacio Bincaz, CEO of Advanced Ionics, added in the news release. “Lummus serves as a launchpad for technologies like ours, enabling us to validate performance and integration under real-world conditions. This milestone proves that green hydrogen can be practical and economically viable, and it marks another key step toward commercial deployment.”

---

This article originally appeared on EnergyCapitalHTX.com.