Mario Romero is an engineer for Intuitive Machines and a former Navy SEAL. He credits his successes in STEM to second—and third—chances. Photo via LinkedIn

Mario Romero is an assembly, integration, and test engineer at the innovative Houston aerospace company Intuitive Machines. He previously served as a Navy SEAL and an EVA Flight Simulator Specialist at NASA.

Intuitive Machines landed its IM-2 mission on the moon last month, before calling an early end of mission. The company reported that its lunar lander was on its side, preventing it from completing the mission as planned.

Still, the IM-2 mission landed closer to the lunar South Pole than any previous lander, according to NASA. And the company still has plenty of innovative projects in the works.

The company secured about $2.5 million from NASA to study challenges related to carrying cargo on the company’s lunar lander and hauling cargo on the moon. The lander will be used for NASA’s Artemis missions to the moon and eventually to Mars.

“Someone has to do it; in fact, the more the merrier,” Romero says on being part of an innovative culture.

“Competition forces innovation, and if I can be selfish for a moment, I think it’s of particular importance for Intuitive Machines because my extremely capable team is more than worthy of having their place stamped in history. We, as a species, have to strive to become a multiplanetary species. Incidentally, part of the trickle-down effect of innovation often leads to spin-off technology that in some way benefits humanity here on Earth.”

Last year, Romero was awarded the key to the city from his hometown of Vineland, New Jersey, and made it a point in his speech to give kids a chance to succeed in the future.

“I am the product of many chances, secondary, tertiary, and more, given to me,” Romero says. “Many of these were admittedly entirely undeserving. I look back now and recognize that those teachers, judges, police, etc. might have all seen something in me that I couldn’t then see in myself. … This is precisely why I often emphasize giving kids multiple chances. Kids are kids, and you can never fully know how you’re inspiring them in the moment, nor how the chances that you give them will affect the trajectory of their lives.”

Texas is expected to represent nearly 10 percent of future STEM opportunities in the nation, and nine of the 20 biggest employers in Texas are STEM-related.

As STEM has become increasingly popular in high schools and at the university level, and the aerospace industry continues to innovate, it is possible that many young future innovators may take the same path a young Romero did.

“I think it’s natural that when new leaps are made in the STEM fields, and in the aerospace realm at large, the youth in general become galvanized by it,” Romero says.

“It’s exciting and reinvigorating to understand that humanity is on the cusp of the next great adventure. As fantastic and essential as this is, I want to emphasize the importance of the arts as well. It has an important place and an important role to play in our evolution, so I personally don’t limit youthful interest to STEM alone. There are fantastic works of art awaiting us, in all their variety, that will come as a result of the efforts and innovation.”

Intuitive Machines will study challenges related to carrying cargo on its lunar lander and hauling cargo on the moon. Photo courtesy of NASA

Houston space company lands latest NASA deal to advance lunar logistics

To The Moon

Houston-based space exploration, infrastructure, and services company Intuitive Machines has secured about $2.5 million from NASA to study challenges related to carrying cargo on the company’s lunar lander and hauling cargo on the moon. The lander will be used for NASA’s Artemis missions to the moon and eventually to Mars.

“Intuitive Machines has been methodically working on executing lunar delivery, data transmission, and infrastructure service missions, making us uniquely positioned to provide strategies and concepts that may shape lunar logistics and mobility solutions for the Artemis generation,” Intuitive Machines CEO Steve Altemus says in a news release.

“We look forward to bringing our proven expertise together to deliver innovative solutions that establish capabilities on the [moon] and place deeper exploration within reach.”

Intuitive Machines will soon launch its lunar lander on a SpaceX Falcon 9 rocket to deliver NASA technology and science projects, along with commercial payloads, to the moon’s Mons Mouton plateau. Lift-off will happen at NASA’s Kennedy Space Center in Florida within a launch window that starts in late February. It’ll be the lander’s second trip to the moon.

In September, Intuitive Machines landed a deal with NASA that could be worth more than $4.8 billion.

Under the contract, Intuitive Machines will supply communication and navigation services for missions in the “near space” region, which extends from the earth’s surface to beyond the moon.

The five-year deal includes an option to add five years to the contract. The initial round of NASA funding runs through September 2029.

A new study on Mars is shining a light on the Earth's own climate mysteries. Image via UH.edu

Houston scientists create first profile of Mars’ radiant energy budget, revealing climate insights on Earth

RESEARCH FINDINGS

Scientists at the University of Houston have found a new understanding of climate and weather on Mars.

The study, which was published in a new paper in AGU Advances and will be featured in AGU’s science magazine EOS, generated the first meridional profile of Mars’ radiant energy budget (REB). REB represents the balance or imbalance between absorbed solar energy and emitted thermal energy across latitudes. An energy surplus can lead to global warming, and a deficit results in global cooling, which helps provide insights to Earth's atmospheric processes too. The profile of Mars’ REB influences weather and climate patterns.

The study was led by Larry Guan, a graduate student in the Department of Physics at UH's College of Natural Sciences and Mathematics under the guidance of his advisors Professor Liming Li from the Department of Physics and Professor Xun Jiang from the Department of Earth and Atmospheric Sciences and other planetary scientists. UH graduate students Ellen Creecy and Xinyue Wang, renowned planetary scientists Germán Martínez, Ph.D. (Houston’s Lunar and Planetary Institute), Anthony Toigo, Ph.D. (Johns Hopkins University) and Mark Richardson, Ph.D. (Aeolis Research), and Prof. Agustín Sánchez-Lavega (Universidad del País, Vasco, Spain) and Prof. Yeon Joo Lee (Institute for Basic Science, South Korea) also assisted in the project.

The profile of Mars’ REB is based on long-term observations from orbiting spacecraft. It offers a detailed comparison of Mars’ REB to that of Earth, which has shown differences in the way each planet receives and radiates energy. Earth shows an energy surplus in the tropics and a deficit in the polar regions, while Mars exhibits opposite behavioral patterns.

The surplus is evident in Mars’ southern hemisphere during spring, which plays a role in driving the planet’s atmospheric circulation and triggering the most prominent feature of weather on the planet, global dust storms. The storms can envelop the entire planet, alter the distribution of energy, and provide a dynamic element that affects Mars’ weather patterns and climate.

The research team is currently examining long-term energy imbalances on Mars and how it influences the planet’s climate.

“The REB difference between the two planets is truly fascinating, so continued monitoring will deepen our understanding of Mars’ climate dynamics,” Li says in a news release.

The global-scale energy imbalance on Earth was recently discovered, and it contributes to global warming at a “magnitude comparable to that caused by increasing greenhouse gases,” according to the study. Mars has an environment that differs due to its thinner atmosphere and lack of anthropogenic effects.

“The work in establishing Mars’ first meridional radiant energy budget profile is noteworthy,” Guan adds. “Understanding Earth’s large-scale climate and atmospheric circulation relies heavily on REB profiles, so having one for Mars allows critical climatological comparisons and lays the groundwork for Martian meteorology.”

------

This article originally ran on EnergyCapital.

Kristen Magas, Anderson Wilder, Obaid Alsuwaidi, and Tiffany Snyder (from left to right) will live in a Mars simulation for 45 days. Photos courtesy of NASA

NASA taps 4 participants for Mars habitat simulation mission in Houston

suiting up

Four individuals have been selected to go to Mars. Well, sort of.

Obaid Alsuwaidi, Kristen Magas, Tiffany Snyder, and Anderson Wilder were picked by NASA to live for 45 days in a 650-square-foot Mars simulation located at Johnson Space Center in Houston. The participants will enter the Human Exploration Research Analog, or HERA, on Friday, November 1, and will live and work like astronauts until Monday, December 16.

Jordan Hundley and Robert Wilson also were named as alternate crew members.

"Scientists use HERA studies to examine how crew members adapt to isolation, confinement, and remote conditions before NASA sends astronauts on deep space missions to the Moon, Mars, and beyond," reads NASA's announcement. "The studies provide data about human health and performance in an enclosed environment over time with crews facing different challenges and tasks."

In the experiment, the participants will complete research and operational duties, including raising shrimp, farming, and completing virtual reality-simulated walks on Mars. In addition to these tasks, the crew will experience communication delays similar to ones astronauts will face on future missions to Mars and beyond, which could be as long as 20 minutes each way.

Through NASA’s Human Research Program, the crew members will participate in 18 human health studies focused on physiological, behavioral, and psychological health during the mission.

Here's a little more about each of the crew members:

  • As captain engineer for the United Arab Emirates’ Ministry of Defense, Obaid Alsuwaidi, provides guidance in civil and marine engineering and addresses challenges facing the organization.
  • Kristen Magas, an educator and engineer currently teaching at Tri-County Regional Vocational Technical High School in Franklin, Massachusetts, mentors students involved in a NASA design and prototyping program.
  • With more than 20 years of information technology and cybersecurity experience, Tiffany Snyder is a supervisor for the Cybersecurity Mission Integration Office at NASA, helping to ensure agency missions are shielded against cybersecurity threats.
  • Currently researching team resiliency and human-machine interactions, Anderson Wilder is a Florida Institute of Technology graduate student working on his doctorate in Psychology and previously served as an executive officer and engineer for an analog mission at the Mars Desert Research Station in Utah.
  • Jordan Hundley (alternate) is a senior consultant at a professional services firm, offering federal agencies technical and programmatic support.
  • Robert Wilson (alternate) is a senior researcher and project manager at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.
Perseverance has landed on Mars. Illustration courtesy of NASA

NASA and Johnson Space Center celebrate unprecedented Mars Perseverance landing

Mars landing

While Houston is in the depths of a historic freeze, some spacey locals are celebrating a major cosmic milestone. NASA — and Johnson Space Center, locally — are toasting the landing of Perseverance, the amiable roving vehicle, on Mars.

The reliable rover, nicknamed "Percy," touched down on the rocky Red Planet at approximately 2:55 pm Houston time on Thursday, February 18, to cheers at JSC and at NASA's Jet Propulsion Laboratory in Southern California, which is spearheading the mission.

In a harrowing descent, described by NASA tech crews as "seven minutes of terror," the rover plunged through the thin Martian atmosphere at more than 12,000 mph. A 70-foot parachute and powered descent slowed the rover to about 2 mph before a "sky crane maneuver," and soft landing at Mars' Jezero Crater.

Importantly, the intrepid Perseverance is carrying the Ingenuity Mars Helicopter – that will attempt the first powered, controlled flight on another planet. Aside from undertaking crucial experiments and sample collections, the first order of business is ensuring that Perseverance is "healthy," said NASA Perseverance staffer, Jessica Samuels, on NASA TV.

"If there's one thing we know, it's that landing on Mars is never easy," said NASA associate administrator for Communications Marc Etkind, in a statement. "But as NASA's fifth Mars rover, Perseverance has an extraordinary engineering pedigree and mission team. We are excited to invite the entire world to share this exciting event with us!"

Proud, starry-eyed Houstonians can watch the developments live on NASA TV online.

------

This article originally ran on CultureMap.

A Rice University scientist will be working on the team for NASA's latest Mars rover. Image courtesy of NASA/JPL-Caltech

Rice scientist tapped by NASA for Mars mission

robo-naut

A Rice University Martian geologist has been chosen by NASA as one of the 13 scientists who will be working on a new Mars rover.

Perseverance, the rover that launched in July and is expected to land on Mars in February. It will be scouting for samples to bring back to study for ancient microbial life, and Kirsten Siebach — an assistant professor of Earth, Environmental and Planetary Sciences — will be among the researchers to work on the project. Her proposal was one of 119 submitted to NASA for funding, according to a Rice press release.

"Everybody selected to be on the team is expected to put some time into general operations as well as accomplishing their own research," she says in the release. "My co-investigators here at Rice and I will do research to understand the origin of the rocks Perseverance observes, and I will also participate in operating the rover."

It's Kirsten Siebach's second Mars rover mission to work on. Photo courtesy of Rice University

Perseverance is headed for Jezero Crater, a 28-mile-wide area that once hosted a lake and river delta where, according to scientists, microbial life may have existed over 3 billion years ago. Siebach is particularly excited hopefully find fossils existing in atmospheric carbon dioxide dissolved in water — which usually exists as limestone on Earth.

"There are huge packages of limestone all over Earth, but for some reason it's extremely rare on Mars," she says. "This particular landing site includes one of the few orbital detections of carbonate and it appears to have a couple of different units including carbonates within this lake deposit. The carbonates will be a highlight of we're looking for, but we're interested in basically all types of minerals."

Siebach is familiar with rovers — she was a member of the team for NASA's Curiosity rover, which has been exploring Mars since 2012. For this new rover, Siebach knows what to expect.

"Because there is only one rover, the whole team at NASA has to agree about what to look at, or analyze, or where to drive on any given day," Siebach says in the release. "None of the rovers' actions are unilateral decisions. But it is a privilege to be part of the discussion and to get to argue for observations of rocks that will be important to our understanding of Mars for decades."

Siebach and her team — which includes Rice data scientist Yueyang Jiang and mineralogist Gelu Costin — are planning to tap into computational and machine-learning methods to map out minerals and discover evidence for former life on Mars. They will also be using a Planetary Instrument for X-ray Lithochemistry, or PIXL, to analyze the materials.

The return mission isn't expected to return until the early 2030s, so it's a long game for the scientists. However, the samples have the potential to revolutionize what we know about life on Mars with more context than before.

"Occasionally, something hits Mars hard enough to knock a meteorite out, and it lands on Earth," she says in the release. "We have a few of those. But we've never been able to select where a sample came from and to understand its geologic context. So these samples will be revolutionary."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Autonomous truck company with Houston routes goes public

on a roll

Kodiak Robotics, a provider of AI-powered autonomous vehicle technology, has gone public through a SPAC merger and has rebranded as Kodiak AI. The company operates trucking routes to and from Houston, which has served as a launchpad for the business.

Privately held Kodiak, founded in 2018, merged with a special purpose acquisition company — publicly held Ares Acquisition Corp. II — to form Kodiak AI, whose stock now trades on the Nasdaq market.

In September, Mountain View, California-based Kodiak and New York City-based Ares disclosed a $145 million PIPE (private investment in public equity) investment from institutional investors to support the business combo. Since announcing the SPAC deal, more than $220 million has been raised for the new Kodiak.

“We believe these additional investments underscore our investors’ confidence in the value proposition of Kodiak’s safe and commercially deployed autonomous technology,” Don Burnette, founder and CEO of Kodiak, said in a news release.

“We look forward to leading the advancement of the commercial trucking and public sector industries,” he added, “and delivering on the exciting value creation opportunities ahead to the benefit of customers and shareholders.”

Last December, Kodiak debuted a facility near George Bush Intercontinental/Houston Airport for loading and loading driverless trucks. Transportation and logistics company Ryder operates the “truckport” for Ryder.

The facility serves freight routes to and from Houston, Dallas and Oklahoma City. Kodiak’s trucks currently operate with or without drivers. Kodiak’s inaugural route launched in 2024 between Houston and Dallas.

One of the companies using Kodiak’s technology is Austin-based Atlas Energy Solutions, which owns and operates four driverless trucks equipped with Kodiak’s driver-as-a-service technology. The trucks pick up fracking sand from Atlas’ Dune Express, a 42-mile conveyor system that carries sand from Atlas’ mine to sites near customers’ oil wells in the Permian Basin.

Altogether, Atlas has ordered 100 trucks that will run on Kodiak’s autonomous technology in an effort to automate Atlas’ supply chain.

Rice University scientists invent new algorithm to fight Alzheimer's

A Seismic Breakthrough

A new breakthrough from researchers at Rice University could unlock the genetic components that determine several human diseases such as Parkinson's and Alzheimer's.

Alzheimer's disease affected 57 million people worldwide in 2021, and cases in the United States are expected to double in the next couple of decades. Despite its prevalence and widespread attention of the condition, the full mechanisms are still poorly understood. One hurdle has been identifying which brain cells are linked to the disease.

For years, it was thought that the cells most linked with Alzheimer's pathology via DNA evidence were microglia, infection-fighting cells in the brain. However, this did not match with actual studies of Alzheimer's patients' brains. It's the memory-making cells in the human brain that are implicated in the pathology.

To prove this link, researchers at Rice, alongside Boston University, developed a computational algorithm called “Single-cell Expression Integration System for Mapping Genetically Implicated Cell Types," or SEISMIC. It allows researchers to zero in on specific neurons linked to Alzheimer's, the first of its kind. Qiliang Lai, a Rice doctoral student and the lead author of a paper on the discovery published in Nature Communications, believes that this is an important step in the fight against Alzheimer's.

“As we age, some brain cells naturally slow down, but in dementia — a memory-loss disease — specific brain cells actually die and can’t be replaced,” said Lai. “The fact that it is memory-making brain cells dying and not infection-fighting brain cells raises this confusing puzzle where DNA evidence and brain evidence don’t match up.”

Studying Alzheimer's has been hampered by the limitations of computational analysis. Genome-wide association studies (GWAS) and single-cell RNA sequencing (scRNA-seq) map small differences in the DNA of Alzheimer's patients. The genetic signal in these studies would often over-emphasize the presence of infection fighting cells, essentially making the activity of those cells too "loud" statistically to identify other factors. Combined with greater specificity in brain regional activity, SEISMIC reduces the data chatter to grant a clearer picture of the genetic component of Alzheimer's.

“We built our SEISMIC algorithm to analyze genetic information and match it precisely to specific types of brain cells,” Lai said. “This enables us to create a more detailed picture of which cell types are affected by which genetic programs.”

Though the algorithm is not in and of itself likely to lead to a cure or treatment for Alzheimer's any time soon, the researchers say that SEISMIC is already performing significantly better than existing tools at identifying important disease-relevant cellular signals more clearly.

“We think this work could help reconcile some contradicting patterns in the data pertaining to Alzheimer’s research,” said Vicky Yao, assistant professor of computer science and a member of the Ken Kennedy Institute at Rice. “Beyond that, the method will likely be broadly valuable to help us better understand which cell types are relevant in different complex diseases.”

---

This article originally appeared on CultureMap.com.

5 incubators and accelerators fueling the growth of Houston startups

meet the finalists

Houston is home to numerous accelerators and incubators that support founders in pushing their innovative startups and technologies forward.

As part of our 2025 Houston Innovation Awards, the new Incubator/Accelerator of the Year category honors a local incubator or accelerator that is championing and fueling the growth of Houston startups.

Five incubators and accelerators have been named finalists for the 2025 award. They support startups ranging from hard-tech companies to digital health startups.

Read more about these organizations below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled.

Get your tickets now on sale for this exclusive event celebrating Houston Innovation.

Activate

Hard tech incubator Activate supports scientists in "the outset of their entrepreneurial journey." The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. It named its second Houston cohort this summer.

This year, the incubator grew to include its largest number of concurrent supported fellows, with 88 companies currently being supported nationally. In total, Activate has supported 296 fellows who have created 236 companies. Those companies have raised over $4 billion in follow-on funding, according to Activate. In Houston, it has supported several Innovation Awards finalists, including Solidec, Bairitone Health and Deep Anchor Solutions. It is led locally by Houston Managing Director Jeremy Pitts.

EnergyTech Nexus

Cleantech startup hub EnergyTech Nexus' mission is to accelerate the energy transition by connecting founders, investors and industrial stakeholders and helping to develop transformative companies, known as "thunderlizards."

The hub was founded in 2023 by CEO Jason Ethier, Juliana Garaizar and Nada Ahmed. It has supported startups including Capwell Services, Resollant, Syzygy Plasmonics, Hertha Metals, EarthEn Energy and Solidec—many of which are current or past Innovation Awards finalists. This year Energy Tech Nexus launched its COPILOT Accelerator, powered by Wells Fargo Innovation Incubator (IN²) at the National Renewable Energy Laboratory (NREL). COPILOT partners with Browning the Green Space, a nonprofit that promotes diversity, equity and inclusion (DEI) in the clean energy and climatech sectors. Energy Tech Nexus also launched its Liftoff fundraising program, its Investor Program, and a "strategic ecosystem partnership" with Greentown Labs.

Greentown Labs

Climatetech incubator Greentown Labs offers its community resources and a network to climate and energy innovation startups looking to grow. The collaborative community offers members state-of-the-art prototyping labs, business resources and access to investors and corporate partners. The co-located incubator was first launched in Boston in 2011 before opening in Houston in 2021.

Greentown has seen major changes and activity this year. In February, Greentown announced Georgina Campbell Flatter as its new CEO, along with a new Board of Directors. In July, it announced Lawson Gow as its Head of Houston, a "dedicated role to champion the success of Greentown Houston’s startups and lead Greentown’s next chapter of impact in the region," according to Greentown. It has since announced numerous new partnerships, including those with Energy Tech Nexus, Los Angeles-based software development firm Nominal, to launch the new Industrial Center of Excellence; and Houston-based Shoreless, to launch an AI lab onsite. Greentown Houston has supported 175 startups since its launch in 2021, with 45 joining in the last two years. Those startups include the likes of Hertha Metals, RepAir Carbon, Solidec, Eclipse Energy (formerly GoldH2) and many others.

Healthtech Accelerator (TMCi)

The Healthtech Accelerator, formerly TMCx, focuses on clinical partnerships to improve healthcare delivery and outcomes. Emerging digital health and medical device startups that join the accelerator are connected with a network of TMC hospitals and seasoned advisors that will prepare them for clinical validation, funding and deployment.

The Healthtech Accelerator is part of Texas Medical Center Innovation, which also offers the TMCi Accelerator for Cancer Therapeutics. The Healthtech Accelerator named its 19th, and latest, cohort of 11 companies last month.

Impact Hub Houston

Impact Hub Houston supports early-stage ventures at various stages of development through innovative programs that address pressing societal issues. The nonprofit organization supports social impact startups through mentorship, connections and training opportunities.

There are more than 110 Impact Hubs globally with 24,000-plus members spanning 69 countries, making it one of the world’s largest communities for accelerating entrepreneurial solutions toward the United Nations' Sustainable Development Goals (SDGs).

---

The Houston Innovation Awards program is sponsored by Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.