The five scientists represent five different academic institutions in Houston. Photo via Getty Images

The National Academy of Inventors has recognized 175 scientists from across the world as NAI Fellows — and five of those inventors are based at Houston institutions.

The program honors academic inventors who, according to NAI, "have demonstrated a spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on quality of life, economic development and the welfare of society."

The five Houston inventors join the ranks of a group of individuals who have generated over 13,000 licensed technologies and companies, and created more than 19 million jobs, according to the announcement.

These are the scientists from Houston organizations:

  • Ananth Annapragada of Baylor College of Medicineis professor of radiology and obstetrics and gynecology, vice chief of research and director of basic research at Baylor College of Medicine and Texas Children's Hospital as well as a member of the Dan L Duncan Comprehensive Cancer Center.
  • Ronald Biediger of the Texas Heart Instituteis associate director of chemistry, Wafic Said Molecular Cardiology Research Laboratories and leading a group of chemists developing small molecule integrin antagonists and agonists for use as therapies, or as adjuncts to cell based therapies, for heart, lung and vascular disease
  • Mark Clarke of the University of Houstonis associate provost for faculty development and faculty affairs at the University of Houston.
  • Ashutosh Sabharwal of Rice University is professor and Ph.D of electrical engineering and was named Fellow of the Institute of Electrical and Electronics Engineers in 2014 for contributions to the theory and experimentation of wireless systems and networks.
  • Jia Zhou of The University of Texas Medical Branch is professor in the Department Pharmacology and Toxicology focusing on drug discovery of bioactive molecules to probe biological systems or act as potential therapeutic agents in neuroscience, cancer/inflammation, infectious diseases, and other human conditions.

The new class of inventors will be inducted on June 8 at the 10th Annual Meeting of the National Academy of Inventors in Tampa, Florida.

These scientists have already established dozens of patents between the five of them across fields and industries. Clarke specifically holds 13 U.S. patents, seven NASA technology innovation awards, and has founded two life science startup companies to commercialize his technologies, according to a news release from UH.

"Most faculty inventors, including myself, do not begin their research careers focused on creating or commercializing new technologies, nor do they usually know where to start when presented with such an opportunity," Clarke says in the release. "Helping faculty members and students transition fundamental discoveries into commercially valuable technologies and products is not only a key part of our mission as a Tier One research university, it is critical to our region's economic prosperity and ensuring that the U.S. remains competitive in an innovation-driven global economy."

From BCM, Annapragada holds 15 patents in the United States and close to 100 worldwide. The majority of his patents are in next generation imaging technologies, CT vascular imaging, and MR molecular imaging, according to a BCM release, and Annapragada is the founder of two active startup companies — Alzeca Inc. and Sensulin LLC.

Mark Clarke (left) and Wei-Chuan Shih were named among the National Academy of Inventors' inaugural class of senior members. Courtesy of the University of Houston

2 UH scientists receive prestigious national recognition for fostering innovation

top of the class

Two researchers at the University of Houston have been named to the inaugural class of senior members for the National Academy of Inventors. The new distinction recognizes the honorees for fostering innovation and educating and mentoring future innovators — as well as their contribution to science and technology.

The two UH honorees are Mark Clarke, associate provost for faculty development and faculty affairs, and Wei-Chuan Shih, associate professor of electrical and computer engineering. Both will be recognized at the eighth annual NAI meeting in Houston this April, a release from UH says.

"Dr. Clarke and Dr. Shih both have impressive records of producing impactful intellectual property and spurring innovation that is pertinent to the Houston region," Amr Elnashai, vice president of research and technology at UH, says in the release. "Their further efforts, including helping UH faculty commercialize technologies as well as working with graduate and undergraduate students to boost their entrepreneurial efforts, are a critical contribution to building the region's innovation ecosystem."

NAI named 65 total scientists from 37 universities as senior members. The scientists have been named on over 1,100 patents issued in the United States. Ten other Texas scientists made the inaugural class, representing Texas Tech university, Texas A&M University, Baylor College of Medicine, and University of Texas at Arlington.

The organization also has a fellowship program, in which UH has 12 current fellows.

Clarke has been at UH for over a decade and previously held the position of associate vice chancellor/vice president for technology transfer at the UH Division of Research, where he oversaw a portfolio of 360 technology patents, according to the release. Clarke has 13 patents to his name and previously worked at two startups — both commercialized technologies Clarke developed in his tenure at NASA then UH.

UH's other senior NIA member, Shih, has been granted 11 patents in the US. His NanoBioPhotonics Group has developed a number of sensing and imaging technologies and devices for biomedicine and environmental testing, among other fields. Shih, who has been at the university for over nine years, created a startup with a group of students called DotLens. The company produced and distributed lenses that could be used to convert a smartphone into a microphone.

A few months ago, a Houston scientist received international recognition when he

won the Nobel Prize for the cancer research he did for the University of Texas MD Anderson Cancer center. Jim Allison won for his work in launching an effective new way to attack cancer by treating the immune system rather than the tumor.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

2 Houston space tech cos. celebrate major tech milestones

big wins

Two Houston aerospace companies — Intuitive Machines and Venus Aerospace — have reached testing milestones for equipment they’re developing.

Intuitive Machines recently completed the first round of “human in the loop” testing for its Moon RACER (Reusable Autonomous Crewed Exploration Rover) lunar terrain vehicle. The company conducted the test at NASA’s Johnson Space Center.

RACER is one of three lunar terrain vehicles being considered by NASA for the space agency’s Artemis initiative, which will send astronauts to the moon.

NASA says human-in-the-loop testing can reveal design flaws and technical problems, and can lead to cost-efficient improvements. In addition, it can elevate the design process from 2D to 3D modeling.

Intuitive Machines says the testing “proved invaluable.” NASA astronauts served as test subjects who provided feedback about the Moon RACER’s functionality.

The Moon RACER, featuring a rechargeable electric battery and a robotic arm, will be able to accommodate two astronauts and more than 880 pounds of cargo. It’s being designed to pull a trailer loaded with more than 1,760 pounds of cargo.

Another Houston company, Venus Aerospace, recently achieved ignition of its VDR2 rocket engine. The engine, being developed in tandem with Ohio-based Velontra — which aims to produce hypersonic planes — combines the functions of a rotating detonation rocket engine with those of a ramjet.

A rotating detonation rocket engine, which isn’t equipped with moving parts, rapidly burns fuel via a supersonic detonation wave, according to the Air Force Research Laboratory. In turn, the engine delivers high performance in a small volume, the lab says. This savings in volume can offer range, speed, and affordability benefits compared with ramjets, rockets, and gas turbines.

A ramjet is a type of “air breathing” jet engine that does not include a rotary engine, according to the SKYbrary electronic database. Instead, it uses the forward motion of the engine to compress incoming air.

A ramjet can’t function at zero airspeed, so it can’t power an aircraft during all phases of flight, according to SKYbrary. Therefore, it must be paired with another kind of propulsion, such as a rotating detonation rocket engine, to enable acceleration at a speed where the ramjet can produce thrust.

“With this successful test and ignition, Venus Aerospace has demonstrated the exceptional ability to start a [ramjet] at takeoff speed, which is revolutionary,” the company says.

Venus Aerospace plans further testing of its engine in 2025.

Venus Aerospace, recently achieved ignition of its VDR2 rocket engine. Photo courtesy of Venus Aerospace

METRO rolls out electric shuttles for downtown Houston commuters

on a roll

The innovative METRO microtransit program will be expanding to the downtown area, the Metropolitan Transit Authority of Harris County announced on Monday.

“Microtransit is a proven solution to get more people where they need to go safely and efficiently,” Houston Mayor John Whitmire said in a statement. “Connected communities are safer communities, and bringing microtransit to Houston builds on my promise for smart, fiscally-sound infrastructure growth.”

The program started in June 2023 when the city’s nonprofit Evolve Houston partnered with the for-profit Ryde company to offer free shuttle service to residents of Second and Third Ward. The shuttles are all-electric and take riders to bus stops, medical buildings, and grocery stores. Essentially, it works as a traditional ride-share service but focuses on multiple passengers in areas where bus access may involve hazards or other obstacles. Riders access the system through the Ride Circuit app.

So far, the microtransit system has made a positive impact in the wards according to METRO. This has led to the current expansion into the downtown area. The system is not designed to replace the standard bus service, but to help riders navigate to it through areas where bus service is more difficult.

“Integrating microtransit into METRO’s public transit system demonstrates a commitment to finding innovative solutions that meet our customers where they are,” said METRO Board Chair Elizabeth Gonzalez Brock. “This on-demand service provides a flexible, easier way to reach METRO buses and rail lines and will grow ridership by solving the first- and last-mile challenges that have hindered people’s ability to choose METRO.”

The City of Houston approved a renewal of the microtransit program in July, authorizing Evolve Houston to spend $1.3 million on it. Some, like council member Letitia Plummer, have questioned whether microtransit is really the future for METRO as the service cuts lines such as the University Corridor.

However, the microtransit system serves clear and longstanding needs in Houston. Getting to and from bus stops in the city with its long blocks, spread-out communities, and fickle pedestrian ways can be difficult, especially for poor or disabled riders. While the bus and rail work fine for longer distances, shorter ones can be underserved.

Even in places like downtown where stops are plentiful, movement between them can still involve walks of a mile or more, and may not serve for short trips.

“Our microtransit service is a game-changer for connecting people, and we are thrilled to launch it in downtown Houston,” said Evolve executive director Casey Brown. “The all-electric, on-demand service complements METRO’s existing fixed-route systems while offering a new solution for short trips. This launch marks an important milestone for our service, and we look forward to introducing additional zones in the new year — improving access to public transit and local destinations.”

———

This article originally ran on CultureMap.