Houston researchers are hard at work in the lab to progress medical advancements at the bedside. Getty Images

Every day, important research is being completed under the roofs of Houston medical institutions. From immunotherapy to complex studies on how a memory is made, Houston researchers are discovering and analyzing important aspects of the future of medicine.

Here are three research projects currently being conducted around town.

University of Houston's potential solution to sickle cell disease

Vassiliy Lubchenko is a University of Houston associate professor of chemistry. Courtesy of UH

For the most part, sickle cells have been a mystery to scientists, but one University of Houston professor has recently reported a new finding on how sickle cells are formed — enlightening the medical community with hopes that better understanding the disease may lead to prevention.

Vassiliy Lubchenko, UH associate professor of chemistry, shared his new finding in Nature Communications. He reports that "droplets of liquid, enriched in hemoglobin, form clusters inside some red blood cells when two hemoglobin molecules form a bond — but only briefly, for one thousandth of a second or so," reads a release from UH.

In sickle cell disease, or anemia, red blood cells are crescent shaped and don't flow as easily through narrow blood vessels. The misshapen cells are caused by abnormal hemoglobin molecules that line up into stiff filaments inside red blood cells. Those filaments grow when the protein forms tiny droplets called mesoscopic.

"Though relatively small in number, the mesoscopic clusters pack a punch," says Lubchenko in the release. "They serve as essential nucleation, or growth, centers for things like sickle cell anemia fibers or protein crystals. The sickle cell fibers are the cause of a debilitating and painful disease, while making protein crystals remains to this day the most important tool for structural biologists."

Lubchenko conclusion is that the key to prevent sickle cell disease is to is to stop the formation of the initial clusters so fibers aren't able to grow out of them.

Baylor College of Medicine's immunotherapy research in breast cancer

science-Digital Composite Image Of Male Scientist Experimenting In Laboratory

Baylor College of Medicine researchers are looking into the complexities of immune cells in breast cancer. Getty Images

Baylor College of Medicine researchers are leading an initiative to figure out the potential effect of immunotherapy on different types of breast cancers. Their report is featured in Nature Cell Biology.

The scientists zoned in on two types of immune cells — neutrophils and macrophages — and they found frequency differed in a way that indicated potential roles in immunotherapy.

"Focusing on neutrophils and macrophages, we investigated whether different tumors had the same immune cell composition and whether seemingly similar immune components played the same role in tumor growth. Importantly, we wanted to find out whether differences in immune cell composition contributed to the tumors' responses to immunotherapy," says Dr. Xiang 'Shawn' Zhang, professor at the Lester and Sue Smith Breast Center and member of the Dan L Duncan Comprehensive Cancer Center at Baylor College of Medicine, in a news release.

Further exploring the discrepancies between the immune cells and the role they play in tumor growth will help better understand immunotherapy's potential in certain types of breast cancer.

"These findings are just the beginning. They highlight the need to investigate these two cellular types deeper. Under the name 'macrophages' there are many different cellular subtypes and the same stands for neutrophils," Zhang says. "We need to identify at single cell level which subtypes favor and which ones disrupt tumor growth taking also into consideration tumor heterogeneity as both are relevant to therapy."

Rice University, UTHeath, and UH's memory-making study

Researchers from all corners of Houston are diving into how memories are made. Courtesy of Rice University

When you make a memory, your brain cells structurally change. Through a multi-institutional study with researchers from UH, Rice University, and the University of Texas Health Science Center at Houston, we now know more about the way memories are made.

When forming memories, three moving parts work together in the human brain — a binding protein, a structural protein and calcium — to allow for electrical signals to enter neural cells and change the molecular structures in cognition. The scientists compared notes on how on that binding protein works.

The team's study was published in the Proceedings of the National Academy of Sciences. Peter Wolynes, a theoretical physicist at Rice, UH physicist Margaret Cheung, and UTHealth neurobiologist Neal Waxham worked together to understand the complex process memories experience in the process of being made.

"This is one of the most interesting problems in neuroscience: How do short-term chemical changes lead to something long term, like memory?" Waxham says in a release from Rice. "I think one of the most interesting contributions we make is to capture how the system takes changes that happen in milliseconds to seconds and builds something that can outlive the initial signal."

Three UH researchers are revolutionizing the way we think the brain works. Andriy Onufriyenko/Getty Images

3 ways University of Houston researchers are innovating brain treatments and technologies

Brain teasers

While a lot of scientists and researchers have long been scratching their heads over complicated brain functionality challenges, these three University of Houston researchers have made crucial discoveries in their research.

From dissecting the immediate moment a memory is made or incorporating technology to solve mobility problems or concussion research, here are the three brain innovations and findings these UH professors have developed.

Brains on the move

Professor of biomedical engineering Joe Francis is reporting work that represents a significant step forward for prosthetics that perform more naturally. Photo courtesy of UH Research

Brain prosthetics have come a long way in the past few years, but a UH professor and his team have discovered a key feature of a brain-computer interface that allows for an advancement in the technology.

Joe Francis,a UH professor of biomedical engineering, reported in eNeuro that the BCI device is able to learn on its own when its user is expecting a reward through translating interactions "between single-neuron activities and the information flowing to these neurons, called the local field potential," according to a UH news release. This is all happening without the machine being specifically programmed for this capability.

"This will help prosthetics work the way the user wants them to," says Francis in the release. "The BCI quickly interprets what you're going to do and what you expect as far as whether the outcome will be good or bad."

Using implanted electrodes, Francis tracked the effects of reward on the brain's motor cortex activity.

"We assume intention is in there, and we decode that information by an algorithm and have it control either a computer cursor, for example, or a robotic arm," says Francis in the release.

A BCI device would be used for patients with various brain conditions that, as a result of their circumstances, don't have full motor functionality.

"This is important because we are going to have to extract this information and brain activity out of people who cannot actually move, so this is our way of showing we can still get the information even if there is no movement," says Francis.

Demystifying the memory making moments

Margaret Cheung, a UH professor, is looking into what happens when a memory is formed in the brain. Photo courtesy of UH Research

What happens when a brain forms a new memory? Margaret Cheung, a UH professor in the school of physics, computer science, and chemistry, is trying to find out.

Cheung is analyzing the exact moment a neuron forms a memory in our brains and says this research will open doors to enhancing memory making in the future.

"The 2000 Nobel laureate Eric Kandel said that human consciousness will eventually be explained in terms of molecular signaling pathways. I want to see how far we can go to understand the signals," says Cheung in a release.

Cheung is looking at calcium in particular, since this element impacts most of cellular life.

"How the information is transmitted from the calcium to the calmodulin and how CaM uses that information to activate decisions is what we are exploring," says Cheung in the release. "This interaction explains the mechanism of human cognition."

Her work is being funded by a $1.1 million grant from the National Institute of General Medical Science from the National Institutes of Health, and she's venturing into uncharted territories with her calcium signaling studies. Previous research hasn't been precise or conclusive enough for real-world application.

"In this work we seek to understand the dynamics between calcium signaling and the resulting encoded CaM states using a multiphysics approach," says Cheung. "Our expected outcome will advance modeling of the space-time distribution of general secondary messengers and increase the predictive power of biophysical simulations."

New tech for brain damage treatment

Badri Roysam, chair of the University of Houston Department of Electrical and Computer Engineering, is leading the project that uncovering new details surrounding concussions. Photo courtesy of UH Research

Concussions and brain damage have both had their fair shares of question marks, but this UH faculty member is tapping into new technologies to lift the curtain a little.

Badri Roysam, the chair of the University of Houston Department of Electrical and Computer Engineering, is heading up a multimillion-dollar project that includes "super microscopes" and the UH supercomputer at the Hewlett Packard Enterprise Data Science Institute. Roysam calls the $3.19 million project a marriage between these two devices.

"By allowing us to see the effects of the injury, treatments and the body's own healing processes at once, the combination offers unprecedented potential to accelerate investigation and development of next-generation treatments for brain pathologies," says Roysam in a release.

The project, which is funded by the National Institute of Neurological Disorders and Stroke (NINDS), is lead by Roysam and co-principal investigator John Redell, assistant professor at UTHealth McGovern Medical School. The team also includes NINDS scientist Dragan Maric and UH professors Hien Van Nguyen and Saurabh Prasad.

Concussions, which affect millions of people, have long been mysterious to scientists due to technological limitations that hinder treatment options and opportunities.

"We can now go in with eyes wide open whereas before we had only a very incomplete view with insufficient detail," says Roysam in the release. "The combinations of proteins we can now see are very informative. For each cell, they tell us what kind of brain cell it is, and what is going on with that cell."

The technology and research can be extended to other brain conditions, such as strokes, brain cancer, and more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

NASA names new chief astronaut based in Houston

new hire

NASA has a new chief astronaut. Scott Tingle, stationed at the space agency’s Johnson Space Center in Houston, assumed the post Nov. 10.

Tingle succeeds NASA astronaut Joe Acaba, who had been chief astronaut since February 2023. Acaba now works on the staff of the Johnson Space Center’s director.

As chief astronaut, Tingle runs NASA’s Astronaut Office. His job includes developing astronauts’ flight crew operations and assigning crews for space missions, such as Artemis missions to the moon.

Tingle, a former captain in the Navy, was named a NASA astronaut candidate in 2009. He has logged over 4,500 flight hours in more than 50 aircraft.

Tingle was a flight engineer aboard the International Space Station, where he spent 168 days in orbit during two expeditions that launched in December 2017. Since returning to Earth, he has held various roles in the Astronaut Office, including mission support, technical leadership and crew readiness.

Before joining NASA, Tingle worked in El Segundo, California, on the technical staff of The Aerospace Corp., a nonprofit that supports U.S. space programs.

Tingle recalls expressing his desire to be an astronaut when he was 10 years old. It took him four tries to be accepted by NASA as an astronaut candidate.

“The first time I figured it was kind of too early. The second application, they sent out some feelers, and that was about it. Put in my third application, and got a couple of calls, but it didn’t quite happen,” Tingle said in an article published on the website of Purdue University, his alma mater.

ExxonMobil officially pauses plans for $7B Baytown hydrogen plant

Change of Plans

As anticipated, Spring-based oil and gas giant ExxonMobil has officially paused plans to build a low-hydrogen plant in Baytown, Chairman and CEO Darren Woods told Reuters in late November.

“The suspension of the project, which had already experienced delays, reflects a wider slowdown in efforts by traditional oil and gas firms to transition to cleaner energy sources as many of the initiatives struggle to turn a profit,” Reuters reported.

Woods signaled during ExxonMobil’s second-quarter earnings call that the company was weighing whether it would move forward with the proposed $7 billion plant.

The Biden-era Inflation Reduction Act created a new 10-year incentive, the 45V tax credit, for production of clean hydrogen. But under President Trump’s "One Big Beautiful Bill Act," the window for starting construction of low-carbon hydrogen projects that qualify for the tax credit has narrowed. The Inflation Reduction Act mandated that construction start by 2033. But the Big Beautiful Bill switched the construction start time to early 2028.

“While our project can meet this timeline, we’re concerned about the development of a broader market, which is critical to transition from government incentives,” ExxonMobil Chairman and CEO Darren Woods said during the company’s second-quarter earnings call.

Woods had said ExxonMobil was figuring out whether a combination of the 45Q tax credit for carbon capture projects and the revised 45V tax credit would enable a broader market for low-carbon hydrogen.

“If we can’t see an eventual path to a market-driven business, we won’t move forward with the [Baytown] project,” Woods said.

“We knew that helping to establish a brand-new product and a brand-new market initially driven by government policy would not be easy or advance in a straight line,” he added.

ExxonMobil announced in 2022 that it would build the low-carbon hydrogen plant at its refining and petrochemical complex in Baytown. The company has said the plant is slated to go online in 2027 and 2028.

ExxonMobil had said the Baytown plant would produce up to 1 billion cubic feet of hydrogen per day made from natural gas, and capture and store more than 98 percent of the associated carbon dioxide. The plant would have been capable of storing as much as 10 million metric tons of CO2 per year.

---

This article originally appeared on EnergyCapitalHTX.com; it was updated to include new information about the plant in December 2025.

8 can't-miss Houston business and innovation events for December

where to be

Editor's note: Houston’s innovation scene is loading up the calendar before the holidays. From climatetech pitch days to the return of favorite festive shindigs, here's what not to miss and how to register. Please note: this article may be updated to include additional event listings.

Dec. 3 — SouthWest-Midwest National Pediatric Device Innovation Consortium

This annual event brings together members, colleagues and guests of the FDA-supported pediatric consortium who are dedicated to assisting device innovators throughout the lifecycle in delivering innovative solutions to patients. Featured speakers include Dr. Danielle Gottlieb from Le Bonheur Children's Hospital, Balakrishna Haridas from Texas A&M University and Dr. Chester Koh from Texas Children’s Hospital.

This event is Wednesday, Dec. 3, from 3:30-8 p.m. at Texas A&M EnMed Tower. Register here.

Dec. 4 — Resiliency & Adaptation Sector Pitch Day: Scaling Solutions to Address Climate Disruption

Join innovators, industry leaders, investors and policymakers as they explore breakthrough climate and energy technologies at Greentown's latest installment of its Sector Pitch Day series, focused on resiliency and adaptation. Hear from Adrian Trömel, Chief Innovation Officer at Rice University; Eric Willman, Executive Director of the Rice WaTER Institute; pitches from 10 Greentown startups and more.

This event is Thursday, Dec. 4, from 1-3:30 p.m. at the Ion. The Ion Holiday Block Party follows. Register here.

Dec. 4 — The Ion District Holiday Block Party

The Ion District, Rice Alliance and Greentown Labs will celebrate the season during the Ion District Holiday Block Party. Expect to find local bites, drinks, music and meaningful connections across Houston’s innovation ecosystem. Guests are invited to participate in Operation Love’s holiday toy drive supporting local families.

This event is Thursday, Dec. 4, from 4-7 p.m. Register here.

Dec. 8 — Pumps & Pipes Annual Event 2025

The annual gathering brings together cross-industry leaders in aerospace, energy and medicine for engaging discussions and networking opportunities. Connor Grennan, Chief AI Architect at the NYU Stern School of Business, will present this year's keynote address, entitled "Practical Strategies to Increase Productivity." Other sessions will feature leaders from Cena Research Institute, NASA Ames Research Center, ExxonMobil, Southwest Airlines and more.

This event is Monday, Dec. 8, from 8 a.m.-5 p.m., at TMC Helix Park. Register here.

Dec. 9 — Jingle and Mingle

Don your ugliest sweater and snap a pic with Startup Santa! Bayou City Startups, Rocket Network, Founder Institute and Energytech Nexus are bringing back their popular Jingle Mingle for the third year. Network and celebrate with founders, community stakeholders and others in Houston's innovation scene. Donations to the Houston Food Bank are encouraged in place of tickets.

This event is Tuesday, Dec. 9, from 5-7 p.m., at the Solarium in Midtown. Register here.

Dec. 9 — European Innovation Spotlight

Celebrate European cooperation and innovation with the European Innovation Council during an exclusive demo night and networking event at Greentown Labs. Hear from 15 EIC-backed founders supported by the European Union with top-class climatetech technologies, listen to a fireside chat and engage in a networking event following the pitches.

This event is Tuesday, Dec. 9, from 4:30-7 p.m., at the Ion. Register here.

Dec. 9-10 — Energy LIVE

Energy LIVE is Reuters Events' flagship ConfEx that brings the full energy ecosystem together under one roof to solve the industry's most urgent commercial and operational challenges. The event will feature 3,000-plus senior executives across three strategic stages, a showcase of 75-plus exhibitors and six strategic content pillars.

This event is Dec. 9-10 at NRG Park. Register here.

Dec. 15 — Innov8 Hub Pitch Day

Hear pitches from members of the latest Innov8 Hub Innovators to Founders cohort, which empowers academic scientists and innovators to become successful startup founders. Meet and network with the founders over light bites and drinks at a reception following the pitch competition.

This event is Monday, Dec. 15, at the Innovation Center at UH Technology Bridge (Bldg. 4). Register here.