Houston researchers are hard at work in the lab to progress medical advancements at the bedside. Getty Images

Every day, important research is being completed under the roofs of Houston medical institutions. From immunotherapy to complex studies on how a memory is made, Houston researchers are discovering and analyzing important aspects of the future of medicine.

Here are three research projects currently being conducted around town.

University of Houston's potential solution to sickle cell disease

Vassiliy Lubchenko is a University of Houston associate professor of chemistry. Courtesy of UH

For the most part, sickle cells have been a mystery to scientists, but one University of Houston professor has recently reported a new finding on how sickle cells are formed — enlightening the medical community with hopes that better understanding the disease may lead to prevention.

Vassiliy Lubchenko, UH associate professor of chemistry, shared his new finding in Nature Communications. He reports that "droplets of liquid, enriched in hemoglobin, form clusters inside some red blood cells when two hemoglobin molecules form a bond — but only briefly, for one thousandth of a second or so," reads a release from UH.

In sickle cell disease, or anemia, red blood cells are crescent shaped and don't flow as easily through narrow blood vessels. The misshapen cells are caused by abnormal hemoglobin molecules that line up into stiff filaments inside red blood cells. Those filaments grow when the protein forms tiny droplets called mesoscopic.

"Though relatively small in number, the mesoscopic clusters pack a punch," says Lubchenko in the release. "They serve as essential nucleation, or growth, centers for things like sickle cell anemia fibers or protein crystals. The sickle cell fibers are the cause of a debilitating and painful disease, while making protein crystals remains to this day the most important tool for structural biologists."

Lubchenko conclusion is that the key to prevent sickle cell disease is to is to stop the formation of the initial clusters so fibers aren't able to grow out of them.

Baylor College of Medicine's immunotherapy research in breast cancer

science-Digital Composite Image Of Male Scientist Experimenting In Laboratory

Baylor College of Medicine researchers are looking into the complexities of immune cells in breast cancer. Getty Images

Baylor College of Medicine researchers are leading an initiative to figure out the potential effect of immunotherapy on different types of breast cancers. Their report is featured in Nature Cell Biology.

The scientists zoned in on two types of immune cells — neutrophils and macrophages — and they found frequency differed in a way that indicated potential roles in immunotherapy.

"Focusing on neutrophils and macrophages, we investigated whether different tumors had the same immune cell composition and whether seemingly similar immune components played the same role in tumor growth. Importantly, we wanted to find out whether differences in immune cell composition contributed to the tumors' responses to immunotherapy," says Dr. Xiang 'Shawn' Zhang, professor at the Lester and Sue Smith Breast Center and member of the Dan L Duncan Comprehensive Cancer Center at Baylor College of Medicine, in a news release.

Further exploring the discrepancies between the immune cells and the role they play in tumor growth will help better understand immunotherapy's potential in certain types of breast cancer.

"These findings are just the beginning. They highlight the need to investigate these two cellular types deeper. Under the name 'macrophages' there are many different cellular subtypes and the same stands for neutrophils," Zhang says. "We need to identify at single cell level which subtypes favor and which ones disrupt tumor growth taking also into consideration tumor heterogeneity as both are relevant to therapy."

Rice University, UTHeath, and UH's memory-making study

Researchers from all corners of Houston are diving into how memories are made. Courtesy of Rice University

When you make a memory, your brain cells structurally change. Through a multi-institutional study with researchers from UH, Rice University, and the University of Texas Health Science Center at Houston, we now know more about the way memories are made.

When forming memories, three moving parts work together in the human brain — a binding protein, a structural protein and calcium — to allow for electrical signals to enter neural cells and change the molecular structures in cognition. The scientists compared notes on how on that binding protein works.

The team's study was published in the Proceedings of the National Academy of Sciences. Peter Wolynes, a theoretical physicist at Rice, UH physicist Margaret Cheung, and UTHealth neurobiologist Neal Waxham worked together to understand the complex process memories experience in the process of being made.

"This is one of the most interesting problems in neuroscience: How do short-term chemical changes lead to something long term, like memory?" Waxham says in a release from Rice. "I think one of the most interesting contributions we make is to capture how the system takes changes that happen in milliseconds to seconds and builds something that can outlive the initial signal."

Three UH researchers are revolutionizing the way we think the brain works. Andriy Onufriyenko/Getty Images

3 ways University of Houston researchers are innovating brain treatments and technologies

Brain teasers

While a lot of scientists and researchers have long been scratching their heads over complicated brain functionality challenges, these three University of Houston researchers have made crucial discoveries in their research.

From dissecting the immediate moment a memory is made or incorporating technology to solve mobility problems or concussion research, here are the three brain innovations and findings these UH professors have developed.

Brains on the move

Professor of biomedical engineering Joe Francis is reporting work that represents a significant step forward for prosthetics that perform more naturally. Photo courtesy of UH Research

Brain prosthetics have come a long way in the past few years, but a UH professor and his team have discovered a key feature of a brain-computer interface that allows for an advancement in the technology.

Joe Francis,a UH professor of biomedical engineering, reported in eNeuro that the BCI device is able to learn on its own when its user is expecting a reward through translating interactions "between single-neuron activities and the information flowing to these neurons, called the local field potential," according to a UH news release. This is all happening without the machine being specifically programmed for this capability.

"This will help prosthetics work the way the user wants them to," says Francis in the release. "The BCI quickly interprets what you're going to do and what you expect as far as whether the outcome will be good or bad."

Using implanted electrodes, Francis tracked the effects of reward on the brain's motor cortex activity.

"We assume intention is in there, and we decode that information by an algorithm and have it control either a computer cursor, for example, or a robotic arm," says Francis in the release.

A BCI device would be used for patients with various brain conditions that, as a result of their circumstances, don't have full motor functionality.

"This is important because we are going to have to extract this information and brain activity out of people who cannot actually move, so this is our way of showing we can still get the information even if there is no movement," says Francis.

Demystifying the memory making moments

Margaret Cheung, a UH professor, is looking into what happens when a memory is formed in the brain. Photo courtesy of UH Research

What happens when a brain forms a new memory? Margaret Cheung, a UH professor in the school of physics, computer science, and chemistry, is trying to find out.

Cheung is analyzing the exact moment a neuron forms a memory in our brains and says this research will open doors to enhancing memory making in the future.

"The 2000 Nobel laureate Eric Kandel said that human consciousness will eventually be explained in terms of molecular signaling pathways. I want to see how far we can go to understand the signals," says Cheung in a release.

Cheung is looking at calcium in particular, since this element impacts most of cellular life.

"How the information is transmitted from the calcium to the calmodulin and how CaM uses that information to activate decisions is what we are exploring," says Cheung in the release. "This interaction explains the mechanism of human cognition."

Her work is being funded by a $1.1 million grant from the National Institute of General Medical Science from the National Institutes of Health, and she's venturing into uncharted territories with her calcium signaling studies. Previous research hasn't been precise or conclusive enough for real-world application.

"In this work we seek to understand the dynamics between calcium signaling and the resulting encoded CaM states using a multiphysics approach," says Cheung. "Our expected outcome will advance modeling of the space-time distribution of general secondary messengers and increase the predictive power of biophysical simulations."

New tech for brain damage treatment

Badri Roysam, chair of the University of Houston Department of Electrical and Computer Engineering, is leading the project that uncovering new details surrounding concussions. Photo courtesy of UH Research

Concussions and brain damage have both had their fair shares of question marks, but this UH faculty member is tapping into new technologies to lift the curtain a little.

Badri Roysam, the chair of the University of Houston Department of Electrical and Computer Engineering, is heading up a multimillion-dollar project that includes "super microscopes" and the UH supercomputer at the Hewlett Packard Enterprise Data Science Institute. Roysam calls the $3.19 million project a marriage between these two devices.

"By allowing us to see the effects of the injury, treatments and the body's own healing processes at once, the combination offers unprecedented potential to accelerate investigation and development of next-generation treatments for brain pathologies," says Roysam in a release.

The project, which is funded by the National Institute of Neurological Disorders and Stroke (NINDS), is lead by Roysam and co-principal investigator John Redell, assistant professor at UTHealth McGovern Medical School. The team also includes NINDS scientist Dragan Maric and UH professors Hien Van Nguyen and Saurabh Prasad.

Concussions, which affect millions of people, have long been mysterious to scientists due to technological limitations that hinder treatment options and opportunities.

"We can now go in with eyes wide open whereas before we had only a very incomplete view with insufficient detail," says Roysam in the release. "The combinations of proteins we can now see are very informative. For each cell, they tell us what kind of brain cell it is, and what is going on with that cell."

The technology and research can be extended to other brain conditions, such as strokes, brain cancer, and more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New accelerator for sports, health AI startups to launch at the Ion

The Collectiv Foundation and Rice University have established a sports, health and wellness startup accelerator at the Ion District’s Collectiv, a sports-focused venture capital platform.

The AI Native Dual-Use Sports, Health & Wellness Accelerator, scheduled to formally launch in March, will back early-stage startups developing AI for the sports, health and wellness markets. Accelerator participants will gain access to a host of opportunities with:

  • Mentors
  • Advisers
  • Pro sports teams and leagues
  • University athletics programs
  • Health care systems
  • Corporate partners
  • VC firms
  • Pilot projects
  • University-based entrepreneurship and business initiatives

Accelerator participants will focus on sports tech verticals inlcuding performance and health, fan experience and media platforms, data and analytics, and infrastructure.

“Houston is quickly becoming one of the most important innovation hubs at the intersection of sports, health, and AI,” Ashley DeWalt, co-founder and managing partner of The Collectiv and founder of The Collectiv Foundation, said in a news release.

“By launching this platform with Rice University in the Ion District,” he added, “we are building a category-defining acceleration engine that gives founders access to world-class research, global sports properties, hospital systems, and venture capital. This is about turning sports-validated technology into globally scalable companies at a moment when the world’s attention is converging on Houston ahead of the 2026 World Cup.”

The Collectiv accelerator will draw on expertise from organizations such as the Rice-Houston Methodist Center for Human Performance, Rice Brain Institute, Rice Gateway Project and the Texas Medical Center.

“The combination of Rice University’s research leadership, Houston’s unmatched health ecosystem, and The Collectiv’s operator-driven investment platform creates a powerful acceleration engine,” Blair Garrou, co-founder and managing partner of the Mercury Fund VC firm and a senior adviser for The Collectiv, added in the release.

Additional details on programming, partners and application timelines are expected to be announced in the coming weeks.

4 Houston-area schools excel with best online degree programs in U.S.

Top of the Class

Four Houston-area universities have earned well-deserved recognition in U.S. News & World Report's just-released rankings of the Best Online Programs for 2026.

The annual rankings offer insight into the best American universities for students seeking a flexible and affordable way to attain a higher education. In the 2026 edition, U.S. News analyzed nearly 1,850 online programs for bachelor's degrees and seven master's degree disciplines: MBA, business (non-MBA), criminal justice, education, engineering, information technology, and nursing.

Many of these local schools are also high achievers in U.S. News' separate rankings of the best grad schools.

Rice University tied with Texas A&M University in College Station for the No. 3 best online master's in information technology program in the U.S., and its online MBA program ranked No. 21 nationally.

The online master's in nursing program at The University of Texas Medical Branch in Galveston was the highest performing master's nursing degree in Texas, and it ranked No. 19 nationally.

Three different programs at The University of Houston were ranked among the top 100 nationwide:
  • No. 18 – Best online master's in education
  • No. 59 – Best online master's in business (non-MBA)
  • No. 89 – Best online bachelor's program
The University of Houston's Clear Lake campus ranked No. 65 nationally for its online master's in education program.

"Online education continues to be a vital path for professionals, parents, and service members seeking to advance their careers and broaden their knowledge with necessary flexibility," said U.S. News education managing editor LaMont Jones in a press release. "The 2026 Best Online Programs rankings are an essential tool for prospective students, providing rigorous, independent analysis to help them choose a high-quality program that aligns with their personal and professional goals."

A little farther outside Houston, two more universities – Sam Houston State University in Huntsville and Texas A&M University in College Station – stood out for their online degree programs.

Sam Houston State University

  • No. 5 – Best online master's in criminal justice
  • No. 30 – Best online master's in information technology
  • No. 36 – Best online master's in education
  • No. 77 – Best online bachelor's program
  • No. 96 – Best online master's in business (non-MBA)
Texas A&M University
  • No. 3 – Best online master's in information technology (tied with Rice)
  • No. 3 – Best online master's in business (non-MBA)
  • No. 8 – Best online master's in education
  • No. 9 – Best online master's in engineering
  • No. 11 – Best online bachelor's program
---

This article originally appeared on CultureMap.com.

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.