From a supercomputer making its debut in West Houston to a behind-the-scenes look at Amazon's artificial intelligence-enabled fulfillment center, these were Houston's top stories in tech. Natalie Harms/InnovationMap

Editor's note: Houston had some big stories in technology this year, from a peek inside Amazon's artificial intelligence-enabled Houston facility and the opening of a new supercomputer to space-focused Houston startups and the future of virtual reality.

Massive data center officially opens just west of Houston

Matthew Lamont is managing director at DownUnder GeoSolutions' which just opened its new, powerful data center west of Houston. Courtesy of DUG

DownUnder GeoSolutions has officially opened its new data centre in Skybox Houston in Katy, Texas. It's being billed as one of the most powerful supercomputers on earth.

The center, which houses DUG's geophysical cloud service, DUG McCloud, celebrated its grand opening on Thursday, May 16. The company's data hall has 15 megawatts of power and resides in a building designed to withstand hurricane-force winds up to 190 mph.

A second, identical hall is already planned to be built out later this year. Together, the two machines will have a capacity of 650 petaflop, which is a measurement of computing speed that's equal to one thousand million million floating-point operations per second. Continue reading.

5 startups keeping Houston known as the Space City

Houston celebrated 50 years since the Apollo moon landing on July 20. Here are some startups that are going to be a part of the next 50 years of space tech in Houston. Photo via NASA.gov

This month, for the most part, has been looking back on the history Houston has as the Space City in honor of the 50th anniversary of the moon landing on July 20. While it's great to recognize the men and women who made this city the major player in space exploration that it is, there are still entrepreneurs today with space applications and experience that represent the future of the Space City. Continue reading.

How Amazon's Houston fulfillment center uses AI technology and robotics to move millions of products

From robotics to artificial intelligence, here's how Amazon gets its products to Houstonians in record time. Photo by Natalie Harms/InnovationMap

Last summer, Amazon opened the doors to its North Houston distribution center — one of the company's 50 centers worldwide that uses automation and robotics to fulfill online orders.

The Pinto Business Park facility has millions of products in inventory across four floors. Products that are 25 pounds or less (nothing heavier is stocked at this location) pass through 20 miles of conveyor belts, 1,500 employees, and hundreds of robots.

The center also has daily tours open to the public. We recently visited to see for ourselves the process a product goes through at this Houston plant. From stowing to shipping, here's how packages go from your shopping cart to your front porch. Continue reading.

Developments in virtual reality technology are changing the workforce, say Houston experts

The solution to Houston's workforce problem might be right in front of our eyes. Getty Images

Everyone's job has training associated with it — from surgeons to construction crane operators — and there's a growing market need for faster, more thorough training of our workforce.

"The best way to learn how to do something, is to just get out and do it," says Eric Liga, co-founder of HoustonVR. "But there are a lot of reasons why you can't do that in certain types of training."

Augmented and virtual reality training programs are on the rise, and Liga cites safety, cost, and unpredictable work environments as some of these most obvious reasons reasons to pivot to training employees through extended reality. This type of training also provides portability and has proven higher retention, Liga says in his keynote speech at Station Houston's AR/VR discuss on April 25.

"You get a much higher retention rate when you actually go out and do something — physically going through the motions — than you do sitting in a classroom or reading a book," he says. Continue reading.

Recently renovated Downtown Houston office space snags leases from 2 tech companies

Main&Co's office space is now 100 percent leased. Courtesy of Main&Co

Two tech-focused companies moved into a newly developed office space in downtown Houston at the intersection of Main Street and Commerce Street. One company relocated its Houston office, and the other company has expanded to the city for the first time.

Oil and gas AI-enabled analytics platform, Ruths.ai relocated its downtown office to Main&Co, located at 114 Main St. The company has 8,457 square feet of office space in the recently renovated historic building.

Meanwhile, global robotics process automation company UiPath has expanded to build a Houston team. The computer software company is based in New York, but has a presence in 18 countries. The company's office has 5,187 square feet of Main&Co's office space. Continue reading.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”

Axiom Space wins NASA contract for fifth private mission, lands $350M in financing

ready for takeoff

Editor's note: This story has been updated to include information about Axiom's recent funding.

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Axiom also announced today, Feb. 12, that it has secured $350 million in a financing round led by Type One Ventures and Qatar Investment Authority.

The company shared in a news release that the funding will support the continued development of its commercial space station, known as Axiom Station, and the production of its Axiom Extravehicular Mobility Unit (AxEMU) under its NASA spacesuit contract.

NASA awarded Axiom a contract in January 2020 to create Axiom Station. The project is currently underway.

"Axiom Space isn’t just building hardware, it’s building the backbone of humanity’s next era in orbit," Tarek Waked, Founding General Partner at Type One Ventures, said in a news release. "Their rare combination of execution, government trust, and global partnerships positions them as the clear successor-architect for life after the ISS. This is how the United States continues to lead in space.”

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.