Despite its high energy production, Texas has had more outages than any other state over the past five years due to the increasing frequency and severity of extreme weather events and rapidly growing demand. Photo via Getty Images

Texas stands out among other states when it comes to energy production.

Even after mass rolling blackouts during Winter Storm Uri in 2021, the Lone Star State produced more electricity than any other state in 2022. However, it also exemplifies how challenging it can be to ensure grid reliability. The following summer, the state’s grid manager, the Electrical Reliability Council of Texas (ERCOT), experienced ten occasions of record-breaking demand.

Despite its high energy production, Texas has had more outages than any other state over the past five years due to the increasing frequency and severity of extreme weather events and rapidly growing demand, as the outages caused by Hurricane Beryl demonstrated.

A bigger storm is brewing

Electric demand is poised to increase exponentially over the next few years. Grid planners nationwide are doubling their five-year load forecast. Texas predicts it will need to provide nearly double the amount of power within six years. These projections anticipate increasing demand from buildings, transportation, manufacturing, data centers, AI and electrification, underscoring the daunting challenges utilities face in maintaining grid reliability and managing rising demand.

However, Texas can accelerate its journey to becoming a grid reliability success story by taking two impactful steps. First, it could do more to encourage the adoption of distributed energy resources (DERs) like residential solar and battery storage to better balance the prodigious amounts of remote grid-scale renewables that have been deployed over the past decade. More DERs mean more local energy resources that can support the grid, especially local distribution circuits that are prone to storm-related outages. Second, by combining DERs with modern demand-side management programs and technology, utilities can access and leverage these additional resources to help them manage peak demand in real time and avoid blackout scenarios.

Near-term strategies and long-term priorities

Increasing electrical capacity with utility-scale renewable energy and storage projects and making necessary electrical infrastructure updates are critical to meet projected demand. However, these projects are complex, resource-intensive and take years to complete. The need for robust demand-side management is more urgent than ever.

Texas needs rapidly deployable solutions now. That’s where demand-side management comes in. This strategy enables grid operators to keep the lights on by lowering peak demand rather than burning more fossil fuels to meet it or, worse, shutting everything off.

Demand response, a demand-side management program, is vital in balancing the grid by lowering electricity demand through load control devices to ensure grid stability. Programs typically involve residential energy consumers volunteering to let the grid operator reduce their energy consumption at a planned time or when the grid is under peak load, typically in exchange for a credit on their energy bill. ERCOT, for example, implements demand responseand rate structure programs to reduce strain on the grid and plans to increase these strategies in the future, especially during the months when extreme weather events are more likely and demand is highest.

The primary solution for meeting peak demand and preventing blackouts is for the utility to turn on expensive, highly polluting, gas-powered “peaker” plants. Unfortunately, there’s a push to add more of these plants to the grid in anticipation of increasing demand. Instead of desperately burning fossil fuels, we should get more out of our existing infrastructure through demand-side management.

Optimizing existing infrastructure

The effectiveness of demand response programs depends in part on energy customers' participation. Despite the financial incentive, customers may be reluctant to participate because they don’t want to relinquish control over their AC. Grid operators also need timely energy usage data from responsive load control technology to plan and react to demand fluctuations. Traditional load control switches don’t provide these benefits.

However, intelligent residential load management technology like smart panels can modernize demand response programs and maximize their effectiveness with real-time data and unprecedented responsiveness. They can encourage customer participation with a less intrusive approach – unlocking the ability for the customer to choose from multiple appliances to enroll. They can also provide notifications for upcoming demand response events, allowing the customer to plan for the event or even opt-out by appliance. In addition to their demand response benefits, smart panels empower homeowners to optimize their home energy and unlock extended runtime for home batteries during a blackout.

Utilities and government should also encourage the adoption of distributed energy resources like rooftop solar and home batteries. These resources can be combined with residential load management technology to drastically increase the effectiveness of demand response programs, granting utilities more grid-stabilizing resources to prevent blackouts.

Solar and storage play a key role

During the ten demand records in the summer of 2023, batteries discharging in the evening helped avoid blackouts, while solar and wind generation covered more than a third of ERCOT's daytime load demand, preventing power price spikes.

Rooftop solar panels generate electricity that can be stored in battery backup systems, providing reliable energy during outages or peak demand. Smart panels extend the runtime of these batteries through automated energy optimization, ensuring critical loads are prioritized and managed efficiently.

Load management technology, like smart panels, enhances the effectiveness of DERs. In rolling blackouts, homeowners with battery storage can rely on smart panels to manage energy use, keeping essential appliances operational and extending stored energy usability. Smart panels allow utilities to effectively manage peak demand, enabling load flexibility and preventing grid overburdening. These technologies and an effective demand response strategy can help Texans optimize the existing energy capacity and infrastructure.

A more resilient energy future

Texas can turn its energy challenges into opportunities by embracing advanced energy management technologies and robust demand-side strategies. Smart panels and distributed energy resources like solar and battery storage offer a promising path to a resilient and efficient grid. As Texans navigate increasing electricity demands and extreme weather events, these innovations provide hope for a future where reliable energy is accessible to all, ensuring grid stability and enhancing the quality of life across the state.

------

Kelly Warner is the CEO of Lumin, a responsive energy management solutions company.

This article originally ran on EnergyCapital.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.

Luxury transportation startup connects Houston with Austin and San Antonio

On The Road Again

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare.

Bookings are now available Monday through Saturday with departure times in the morning and evening. One-way fares range from $47-$87, putting Shutto in a similar lane to Dallas-based Vonlane, which also offers routes from Houston to Austin and San Antonio.

Shutto enters the market at a time when highway congestion is a hotter topic than ever. With high-speed rail still years in the future, its model aims to provide fast, predictable service at commuter prices.

The startup touts an on-time departure guarantee and a relaxed, intimate ride. Only 12 passengers fit inside each Mercedes Sprinter van, equipped with Wi-Fi and leather seating. And each route includes a pit stop at roadside favorite Buc-ee's.

In announcing the launch, founder and CEO Alberto Salcedo called the company a new category in Texas mobility.

“We are bringing true disruptive mobility to Texas: faster and more convenient than flying (no security lines, no delays), more comfortable and exclusive than the bus or train, and up to 70 percent cheaper than private transfers or Uber Black,” Salcedo said in a release.

“Whether you’re commuting for business, visiting family, exploring Texas wineries, or doing a taco tour in San Antonio, Shutto makes traveling between these cities as easy and affordable as riding inside the city."

Beyond the scheduled routes, Shutto offers private, customizable trips anywhere in the country, a service it expects will appeal to corporate retreat planners, party planners, and tourists alike.

In Houston, the service picks up and drops off near the Galleria at the Foam Coffee & Kitchen parking lot, 5819 Richmond Ave.. In San Antonio, it is located at La Panadería Bakery’s parking lot at 8305 Broadway. In Austin, the location is the Pershing East Café parking lot at 2501 E. Fifth St.

---

This article originally appeared on CultureMap.com.

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”