Together, Little Place Labs and Loft Orbital are paving the way for a new era of rapid-response capabilities in space. Photo courtesy of Little Place Labs

A Houston space startup has announced a new partnership that will “push the boundaries of real-time data processing and insight delivery.”

Little Place Labs is collaborating with San Francisco-based Loft Orbital to pair its low-latency operations, using its space infrastructure with LittlePlace Labs’ cutting-edge analytics. This will enhance maritime domain awareness under a US Air Force Phase 2 STTR by deploying Little Place Labs software to Loft’s YAM-6 satellite as a virtual mission.

“Our on-orbit data processing solutions, paired with Loft’s satellite platform, allow us to derive and deliver insights in near real-time for time-sensitive situations,” Little Place Labs Co-founder and CEO Bosco Lai says in a news release. “These insights are critical to commercial and national security stakeholders, including those in the US government. This collaboration highlights the new space age, where companies like Little Place Labs and Loft come together, integrating our solutions into powerful capabilities.”

Loft plans to deploy Little Place Labs’ applications to its constellation of satellites. Each satellite node will be equipped with a sensing resource like visible and infrared images, and configurable software-defined radios. The satellite nodes make up Loft’s space infrastructure, which will include onboard edge compute and connectivity resources. The infrastructure will be used to build and complete complex missions. The low-latency maritime domain awareness is an example of the complex challenges that won’t involve deployment of new hardware. This aligns with both companies goals to address real-time data solutions and rapid responses in space.

"We are proud to support customers like Little Place Labs in pushing the limits of what’s possible with low latency applications and onboard edge compute,” Mitchell Scher, director of business development at Loft, adds. “While we’re providing the infrastructure to support these kinds of low-latency operations, it is only as useful as the applications our customers deploy and the operational value they produce for their end users.”

Little Place Labs will be working with another military organization, as they were recently selected by AFWERX for a STTR Phase II contract in the amount of $1.8 million dollars. The focus will be “revolutionizing space- based ISR through decentralized systems,” per a news release. This will be done in-orbit ML computing for near-real-time intelligence to address challenges in the Department of the Air Force.

Another recent collaboration sees their Orbitfy software suite on LEOcloud’s Space Edge infrastructure as a Service (IaaS). This will help facilitate “scalable real-time data processing and analysis directly on spacecraft, significantly reducing downlink costs and enabling faster mission-critical insight,” according to a news release. The Orbitfy Software suite combines data preprocessing capabilities with low-SWaP machine learning applications that is designed for deployment directly on space infrastructures and satellites.

Little Place Labs is also using its satellite real-time solutions to help address wildfires. They were one of four companies part of the completion of the first round of the XPRIZE Autonomous Wildfire Challenge by the coalition Fire Foresight.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.