This week's roundup of Houston innovators includes Grace Rodriguez of Impact Hub Houston, Youngro Lee of NextSeed, and Liz Youngblood of Baylor St. Luke's Medical Center. Courtesy photos

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — startup development, fintech, and health care — recently making headlines in Houston innovation.

Grace Rodriguez, CEO and executive director of Impact Hub Houston

Impact Hub Houston has two new initiatives for female founders. Photo courtesy of Impact Hub Houston

Two accelerator programs were recently announced and they both are aimed at supporting female founders — and one Houston organization is behind them both. Impact Hub Houston announced that it has partnered up with Frost Bank to sponsor eight female founders to participate in Impact Hub's new Accelerate Membership Program.

Additionally, Impact Hub Houston has teamed up with MassChallenge for their own initiative supporting female founders in the Houston-Galveston region in partnership with Houston-based Workforce Solutions. The three organizations are collaborating to launch launch a bootcamp to support female founders in the greater Houston region.

"As a female founder myself, I'm incredibly excited about this opportunity to support and uplift more women entrepreneurs and women-led businesses in our region," says Grace Rodriguez, CEO and executive director of Impact Hub Houston, in a news release. "By now, it's no secret that women, and especially women of color, are under-invested in; and this is our chance to change that by helping more women strengthen their businesses and prepare to seek funding." Click here to read more.

Youngro Lee, co-founder and CEO of NextSeed and COO of Republic

What does the future of investment look like? That's something Youngro Lee thinks about daily – and he shares his thoughts on this week's episode of the Houston Innovators Podcast. Photo courtesy of NextSeed

The world of investing is changing — and the power shift is tilting from the rich elite to individuals. Youngro Lee, co-founder and CEO of NextSeed and COO of Republic, has seen the change starting several years ago.

"Investing is traditionally seen as something you can't do unless you're rich," Lee says on this week's episode of the Houston Innovators Podcast. "There was a certain understanding of what anyone (looking to invest) should do. … But now the world is so different."

Lee shares more about the future of investing and how he's watched the Houston innovation ecosystem develop over the years on the episode. Click here to read more and stream the podcast.

Liz Youngblood, president of Baylor St. Luke's Medical Center and senior vice president and COO of St. Luke's Health

As we enter year two of the pandemic, the way hospitals function now and in the future is forever changed. Photo courtesy

No industry has been unaffected by COVID-19, Liz Youngblood, president of Baylor St. Luke's Medical Center and senior vice president and COO of St. Luke's Health, observes in a guest column for InnovationMap. But hospitals — they've had a spotlight shown on them and their technology adoption since day one of the pandemic.

"The pace of innovation for hospitals has been at breakneck speed — from the evolution of new treatment protocols to the need to reconfigure physical spaces to support an influx of patients while also promoting a healing environment during this unprecedented time," she writes.

Hospitals, she says, look and feel completely different now than they did last year and the year before that. Click here to read more.

As we enter year two of the pandemic, the way hospitals function now and in the future is forever changed. Photo via Getty Images

Houston expert: Hospitals are at the forefront of innovation due to pandemic

guest column

The COVID-19 pandemic has had a drastic effect on every industry throughout the world. Additionally, we have all experienced multiple changes to our daily routine such as schools implementing virtual and hybrid learning while reconfiguring classrooms to promote social distancing and fitness studios closing off every other cardio machine and bench.

But no industry has had to pivot and innovate more than health care, which has been ground zero for the pandemic.

The pace of innovation for hospitals has been at breakneck speed — from the evolution of new treatment protocols to the need to reconfigure physical spaces to support an influx of patients while also promoting a healing environment during this unprecedented time.

Hospitals look and feel a lot different today because of significant modifications that have been made to care for patients and limit exposure to the virus. While a number of these modifications occurred under temporary state waivers, some of these changes may be here to stay.

Adding windows and alternative communication options to every room

Hospitals found that every room is valuable during a pandemic. Identifying and converting any available space, including private rooms like offices, break rooms, and conference rooms, was essential to accommodate an influx of patients during a surge. And when dealing with a highly infectious area, it is imperative to maximize staff and physician efforts while also safely minimizing the amount of time that staff members enter and exit rooms.

One way to do this is by adding windows in doors to promote patient visibility. This increased visibility can improve patient safety while conserving critical personal protective equipment. However, a down side to limiting the amount of times staff members enter and exit rooms is reduced valuable communication opportunities, which is why alternative mechanisms to communicate with patients must be in place in addition to increased visibility.

Implementing additional negative pressure capabilities

Like adding windows to every patient door, negative pressure rooms exist to keep non-contaminated areas free of airborne pathogens. In a negative pressure room, the air in the room is pulled into a room instead of being pushed out of a room, which is very effective in preventing airborne contaminants from escaping the room and infecting other people. But hospitals are not traditionally built with significant numbers of negative pressure rooms as demand for these types of rooms has historically been low.

In addition, the traditional way to design a facility is to spread negative pressure rooms throughout the hospital instead of consolidating them onto specific units. Although not required for COVID-19 patients, negative pressure rooms are helpful in ensuring maximum capabilities within different zones. In instances where negative pressure rooms could not be created, HEPA filters can still be used to "scrub" the air.

Converting anesthesia machines to ventilators

Anesthesia machines are capable of providing life-sustaining mechanical ventilation to patients with respiratory failure from diseases like COVID-19. They are used for this purpose every day in the operating room. Although they are not recommended for long-term ventilator needs, anesthesia ventilators can be modified to provide ventilatory support and are an obvious first-line backup when there are not sufficient ICU ventilators to meet patient care needs.

Building barriers to increase the safety of care

Plexiglass barriers have become a common sight in daily life including the front desks at hospitals. However, hospitals have taken it a step further and have either built or sourced equipment such as intubation boxes, which can be used during the intubation process, which consists of placing a breathing tube into a patient's airway and then connecting it to a ventilator or anesthesia machine if the patient is having surgery. Intubations are often done by an anesthesiologist, intensive care or emergency room provider; however, traditionally we had not often dealt with highly-contagious patients, so providing a higher level of protection is an important step in the containment of this type of virus.

The way healthcare providers enter and exit a COVID patient's room is as important as the proper use of PPE. In a pre-pandemic world, hospitals didn't specifically create spaces or areas within patient floors for staff to remove and discard their PPE and there wasn't any visible signage warning them that they were about to enter or leave a high-risk area. Many hospitals across the country have implemented color-coded zones within their COVID floors to caution staff of the type of precautions they should be taking at any given time. The creation of zones helps to protect staff and reduce contamination opportunities within the unit itself. Red, yellow and green zones using visual markers can be created to help provide staff designated areas that certain processes must be followed such as where PPE must be worn, where it can be donned and doffed and where PPE should not be worn.

Managing complex logistical challenges

Hospitals have been challenged with having to continue to provide uninterrupted care for COVID and non-COVID patients during the pandemic, while also handling, storing and administering vaccines. Hospitals have been at the forefront of the vaccine distribution system, working closely with state and federal officials to distribute vaccines on a large scale and reach the underserved populations that were hit hardest by COVID-19. For example, Baylor St. Luke's chose Texas Southern University, located within the Third Ward of Houston, as a vaccine site to reach communities of color and leverage its accessible location and the school's pharmacy students and faculty. And more recently, the hospital worked with Rice University to administer vaccines at its football stadium, a large venue that can be accessed easily through public transportation. Having these offsite venues with ample space has helped alleviate the space burden on hospitals during the vaccination efforts. Non-traditional healthcare delivery locations like these allow health care providers to administer more doses, closer to targeted communities than would be possible at a single hospital.

As we enter year two of the pandemic, the way hospitals function now and in the future is forever changed. Hospitals continue to learn and adapt during the COVID-19 pandemic, and in case of another pandemic, hospitals are better equipped to quickly pivot to provide care for a surge of patients and to assist in the recovery efforts.

------

Liz Youngblood is president of Baylor St. Luke's Medical Center and senior vice president and COO of St. Luke's Health.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”

------

This article originally appeared on EnergyCapital.

Biosciences startup becomes Texas' first decacorn after latest funding

A Dallas-based biosciences startup whose backers include millionaire investors from Austin and Dallas has reached decacorn status — a valuation of at least $10 billion — after hauling in a series C funding round of $200 million, the company announced this month. Colossal Biosciences is reportedly the first Texas startup to rise to the decacorn level.

Colossal, which specializes in genetic engineering technology designed to bring back or protect various species, received the $200 million from TWG Global, an investment conglomerate led by billionaire investors Mark Walter and Thomas Tull. Walter is part owner of Major League Baseball’s Los Angeles Dodgers, and Tull is part owner of the NFL’s Pittsburgh Steelers.

Among the projects Colossal is tackling is the resurrection of three extinct animals — the dodo bird, Tasmanian tiger and woolly mammoth — through the use of DNA and genomics.

The latest round of funding values Colossal at $10.2 billion. Since launching in 2021, the startup has raised $435 million in venture capital.

In addition to Walter and Tull, Colossal’s investors include prominent video game developer Richard Garriott of Austin and private equity veteran Victor Vescov of Dallas. The two millionaires are known for their exploits as undersea explorers and tourist astronauts.

Aside from Colossal’s ties to Dallas and Austin, the startup has a Houston connection.

The company teamed up with Baylor College of Medicine researcher Paul Ling to develop a vaccine for elephant endotheliotropic herpesvirus (EEHV), the deadliest disease among young elephants. In partnership with the Houston Zoo, Ling’s lab at the Baylor College of Medicine has set up a research program that focuses on diagnosing and treating EEHV, and on coming up with a vaccine to protect elephants against the disease. Ling and the BCMe are members of the North American EEHV Advisory Group.

Colossal operates research labs Dallas, Boston and Melbourne, Australia.

“Colossal is the leading company working at the intersection of AI, computational biology, and genetic engineering for both de-extinction and species preservation,” Walter, CEO of TWG Globa, said in a news release. “Colossal has assembled a world-class team that has already driven, in a short period of time, significant technology innovations and impact in advancing conservation, which is a core value of TWG Global.”

Well-known genetics researcher George Church, co-founder of Colossal, calls the startup “a revolutionary genetics company making science fiction into science fact.”

“We are creating the technology to build de-extinction science and scale conservation biology,” he added, “particularly for endangered and at-risk species.”

Houston investment firm names tech exec as new partner

new hire

Houston tech executive Robert Kester has joined Houston-based Veriten, an energy-focused research, investment and strategy firm, as technology and innovation partner.

Kester most recently served as chief technology officer for emissions solutions at Honeywell Process Solutions, where he worked for five years. Honeywell International acquired Houston-based oil and gas technology company Rebellion Photonics, where Kester was co-founder and CEO, in 2019.

Honeywell Process Solutions shares offices in Houston with the global headquarters of Honeywell Performance Materials and Technologies. Honeywell, a Fortune 100 conglomerate, employs more than 850 people in Houston.

“We are thrilled to welcome Robert to the Veriten team,” founder and CEO Maynard Holt said in a statement, “and are confident that his technical expertise and skills will make a big contribution to Veriten’s partner and investor community. He will [oversee] every aspect of what we do, with the use case for AI in energy high on the 2025 priority list.”

Kester earned a doctoral degree in bioengineering from Rice University, a master’s degree in optical sciences from the University of Arizona and a bachelor’s degree in laser optical engineering technology from the Oregon Institute of Technology. He holds 25 patents and has more than 25 patents pending.

Veriten celebrated its third anniversary on January 10, the day that the hiring of Kester was announced. The startup launched with seven employees.

“With the addition of Dr. Kester, we are a 26-person team and are as enthusiastic as ever about improving the energy dialogue and researching the future paths for energy,” Holt added.

Kester spoke on the Houston Innovators Podcast in 2021. Listen here

.