A patent is an asset — says this Texas-based intellectual property expert. Photo via Getty Images

Seeking patent protection can offer a substantial competitive advantage to startups looking to raise capital, especially during a venture capital downturn. Besides the protection patents can provide against intellectual property theft, they are also assets that can translate into expansion opportunities and additional revenue streams. These factors are important to institutions and individuals that invest in startups, as they may reduce downside risks to their investments and help outline a growth trajectory.

As Kathi Vidal, under secretary of commerce for intellectual property and director of the U.S. Patent and Trademark Office, said during a speech last year, “having a [patent] pending application helps secure funding, and it keeps potential competitors out of your space.”

The experience of Austin-based VoChill, a startup that created a new line of personal wine chillers, offers a case study of how filing for patent protection as early as possible can set up any startup for success, not only when seeking to raise capital, but also when working to expand its commercial relationships and distribution channels.

Filing for patents quickly gave VoChill’s founders a competitive advantage when approaching potential investors, as it demonstrated the management team’s high level of preparedness and business acumen. For investors who eventually committed capital to the startup, the filings signaled a safer bet on investing in VoChill.

There is plenty of evidence indicating that patents help attract capital and generate growth opportunities. A study conducted by professors from Harvard Business School and New York University’s Stern School of Business found that patent protection increased startups’ odds of receiving venture capital funding by 59 percent.

PitchBook data shows that startups seeking patents raise more capital than their non-patent-seeking peers. About 58 percent of venture capital went to startups with patents or with patent applications from 2011 to 2020, the research firm notes.

Patents can also help drive a startup’s expansion and grow sales. According to the National Bureau of Economic Research, or NBER, the approval of a startup’s first patent application increases its employee growth by 36 percent over the following five years. After five years, a new company with a patent increases its sales by a cumulative 80 percent more than companies that do not have a patent.

Patents can also increase a startup’s chances of obtaining distribution deals or, in the case of consumer products, partnerships with retailers. In VoChill’s experience, patent protection is a recurring theme in conversations not only with investors but also distributors and retailers.

Patents offer startups the possibility to pursue a licensing model as well. Licensing or selling the rights to a patent so that others may produce products or processes based on that patent can bring in ongoing revenue streams.

Down the line, having patent protection can lead to better exit opportunities, be it by going public or via a private divestiture.

According to the NBER, having patents more than doubles the probability that a startup is eventually listed on a stock exchange.

PitchBook data, meanwhile, shows that patent-seeking companies go public at a rate more than five times higher than non-patent-seeking companies (23.2 percent versus 4 percent).

In the case of exits via a sale of the startup, the median exit value for patent-holding companies is 154.9 percent higher than it is for companies without patents per year on average, according to PitchBook.

While the business case for seeking patent protection is clear, startups should keep a few considerations in mind when seeking to do so. Understanding time bars is crucial; for example, the United States generally allows only one year to file a patent application after an invention is publicly written about, shown, used, or otherwise disclosed, and overseas often no one-year “grace period exists.”

Still, other important predicates are finding out whether the innovation is truly new, identifying the most crucial components of a product or system, and thinking about what aspects competitors are likely to discover and copy.

------

Chris Palermo is partner at Baker Botts where he specializes in intellectual property development. Lisa Pawlik is CEO of VoChill, a company that creates individual wine glass chillers.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

​Planned UT Austin med center, anchored by MD Anderson, gets $100M gift​

med funding

The University of Texas at Austin’s planned multibillion-dollar medical center, which will include a hospital run by Houston’s University of Texas MD Anderson Cancer Center, just received a $100 million boost from a billionaire husband-and-wife duo.

Tench Coxe, a former venture capitalist who’s a major shareholder in chipmaking giant Nvidia, and Simone Coxe, co-founder and former CEO of the Blanc & Otus PR firm, contributed the $100 million—one of the largest gifts in UT history. The Coxes live in Austin.

“Great medical care changes lives,” says Simone Coxe, “and we want more people to have access to it.”

The University of Texas System announced the medical center project in 2023 and cited an estimated price tag of $2.5 billion. UT initially said the medical center would be built on the site of the Frank Erwin Center, a sports and entertainment venue on the UT Austin campus that was demolished in 2024. The 20-acre site, north of downtown and the state Capitol, is near Dell Seton Medical Center, UT Dell Medical School and UT Health Austin.

Now, UT officials are considering a bigger, still-unidentified site near the Domain mixed-use district in North Austin, although they haven’t ruled out the Erwin Center site. The Domain development is near St. David’s North Medical Center.

As originally planned, the medical center would house a cancer center built and operated by MD Anderson and a specialty hospital built and operated by UT Austin. Construction on the two hospitals is scheduled to start this year and be completed in 2030. According to a 2025 bid notice for contractors, each hospital is expected to encompass about 1.5 million square feet, meaning the medical center would span about 3 million square feet.

Features of the MD Anderson hospital will include:

  • Inpatient care
  • Outpatient clinics
  • Surgery suites
  • Radiation, chemotherapy, cell, and proton treatments
  • Diagnostic imaging
  • Clinical drug trials

UT says the new medical center will fuse the university’s academic and research capabilities with the medical and research capabilities of MD Anderson and Dell Medical School.

UT officials say priorities for spending the Coxes’ gift include:

  • Recruiting world-class medical professionals and scientists
  • Supporting construction
  • Investing in technology
  • Expanding community programs that promote healthy living and access to care

Tench says the opportunity to contribute to building an institution from the ground up helped prompt the donation. He and others say that thanks to MD Anderson’s participation, the medical center will bring world-renowned cancer care to the Austin area.

“We have a close friend who had to travel to Houston for care she should have been able to get here at home. … Supporting the vision for the UT medical center is exactly the opportunity Austin needed,” he says.

The rate of patients who leave the Austin area to seek care for serious medical issues runs as high as 25 percent, according to UT.

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.