Revealed at an event earlier this month, the Ion is now home to installations by Houston-based artists Christopher Blay and Kill Joy, which play on the traditional window displays the building hosted for years as the historic Sears Building. Photo courtesy of Marc Furi Creative/the Ion

Two new art installations at the Ion speak to the building's past and its potential future.

Revealed at an event earlier this month, the innovation hub developed by Rice University is now home to installations by Houston-based artists Christopher Blay and Kill Joy, which play on the traditional window displays the building hosted for years as the historic Sears Building.

The pieces are part of the Ion's Eye on Art program, according to a release. Each was selected by the Ion and Ion District Art Advisory Council with support from Piper Faust.

"Innovation and art have a lot more in common than you might think. Many of our local artists learn how to use emerging technologies to create their pieces and hone their craft,” Jan E. Odegard, executive director of the Ion, says in a statement. “Creativity plays a vital role in fostering innovation and we’re honored to provide artists like Christopher and Kill Joy with a platform to serve as an inspiration for the entire innovation ecosystem here at the Ion.”

Blay, who's an artist, writer and currently serves as the chief curator of the Houston Museum of African American Culture, created his installation in collaboration with the Ion Prototyping Lab. Using canvases and wood frames, the installation depicts slaving vessels and spaceships to "symbolizes where the Black community has been and where they are going," according to the Ion.

The installation is part of Blay's latest body of work, “The SpLaVCe Program."

Joy's work focuses on environmental and social justice. Her installation at the Ion, “Creation, Current, Solution," uses animated puppets inspired by Filipino folklore to explore the intersection of technology and sustainable living.

Blay and Joy's installations will be on display for the next six months, and will rotate out to feature other Houston-based artists' work.

The Ion first launched the The Eye On Art Program in March 2022. The debut displays included Lina Dib’s over-the-top kitsch “Self-Portrait in the Garden” and Preston Gaines' multi-sensory “Fantasy Landscape.” The second rotation featured Lisa Morales and Stacey Gresell’s “The Collective Hive” and “Exploración Orgánica” by Maria Rodriguez, Miriam Mireles, Bryce Saucier, Timothy Hudson, and Victoria Armenta: “Exploración Orgánica”

Earlier this summer, the Ion also announced that it would launch its official workforce development partner’s 12- to 15- week technology skills training courses this fall.

Click through photos from the new installation below.

“The SpLaVCe Program" by Christopher Blay

Photo courtesy of Marc Furi Creative/the Ion

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.