This month, TMCi is welcoming a slew of health tech and cancer innovators who will advance solutions in medicine over the next several months. Image via TMC.edu

The Texas Medical Center has announced the latest cohorts of its two health tech accelerators.

The Texas Medical Center Innovation has named eight companies that are in the Spring 2023 Accelerator for HealthTech cohort. TMCi also announced 21 participants are set to join the 2023 Accelerator for Cancer Therapeutics cohort. Both programs connect the entrepreneurs and innovators to experts at TMC’s campuses to solve unmet clinical needs and reach the next business milestone.

“At TMC Innovation, we start with a promise of uniting cutting-edge innovators in science and medicine with the talent found at the Texas Medical Center," says Emily Reiser, associate director of TMC Innovation, in a news release. "Our 2023 cohort members are tackling some of the most critical issues we face today in healthcare.

"We are excited to welcome a new group of researchers and companies to the TMC Innovation Factory, and to work collaboratively with our new cohort members and our partners from across the Texas Medical Center," she continues.

Here's what 2023 can expect from these two program's cohorts.

TMCi HealthTech Accelerator

The six-month, twice annual HealthTech Accelerator — originally launched in 2014 with over 225 alumni companies — focuses on digital health and medical device startups. The spring cohort are addressing solutions across maternal medicine, mental health, diagnostics, patient experience, and artificial intelligence.

"Uniting talented professionals from across the globe provides a unique opportunity for innovation, creativity, and development in diverse areas of expertise," says Devin Dunn, head of the Accelerator for Healthtech at TMCi, in the release. "Our tailored program maximizes participants' experiences while determining the best match between these companies and Texas Medical Center’s network."

The cohort was selected following a November bootcamp that introduced potential startup members to the TMC and the Houston health care community.

The following companies will join the TMC this month:

  • Based in Roseville, Minneapolis, Bloom Standard is deploying the first self-driving pediatric ultrasound to earlier diagnose heart and lung conditions in primary care, remote and under-resourced settings.
  • San Francisco-based Ejenta automates remote monitoring and care using AI technology exclusively licensed from NASA. “Intelligent agents” learn from connected devices, claims and EMR data to monitor patients, predict health and to provide automated support for patients and automated workflow for clinicians.
  • Kintsugi, based in Berkley, California, is on a mission to see mental health more clearly by developing novel voice biomarker infrastructure to detect signs of depression and anxiety from short clips of free-form speech.
  • San Francisco-based Lana Health is modernizing patient experiences, across the care continuum with an end-to-end, scalable platform, enabling frictionless care transitions, high patient satisfaction, and better clinical outcomes.
  • Liberate Medical, from Crestwood, Kentucky, improves outcomes for mechanically ventilated patients using its breakthrough, non-invasive, respiratory muscle-protective, neurostimulation device, VentFree.
  • Limbix, headquartered in Palo Alto, has a mission to improve mental health with accessible technology.
  • Nua Surgical, from Galway, Ireland, Nua Surgical is an award-winning Irish start-up dedicated to innovating in women’s health.
  • Houston-based Prana Thoracic is developing solutions for the detection and intervention of early-stage lung cancer.

Accelerator for Cancer Therapeutics

The TMC has announced the 21 researchers and companies tapped to join the 2023 Accelerator for Cancer Therapeutics.

The nine-month program, funded by the Cancer Prevention and Research Institute of Texas in partnership with the Gulf Coast Consortia and the University of Texas Medical Branch, supports investigators and early-stage biotechnology companies with innovative solutions in cancer therapeutics. Participants will be mentored by a group of scientific, business, and innovation leaders to ultimately be positioned to apply for grants and pitch to investors and corporate partners to further the development of their innovative cancer solutions.

“For this third cohort, we focused on a strategic and extensive recruitment process, including the evaluation of 1,679 cancer research projects. From 56 applications, we selected 21 participants that will gain access to valuable resources, integrated training and mentorship to prepare for clinical trials,” says Ahmed AlRawi, program manager of Accelerator for Cancer Therapeutics, in the release. “Our 2023 cohort represents our most diverse cohort to date, including eight companies led by women entrepreneurs. We are excited to continue the momentum and build off the successes of our previous years.”

Forty-five participants have gone through the accelerator program since its launch in 2021, and collectively, the entrepreneurs have raised more than $90 million in funding and three projects are in the clinic.

The 2023 cohort participants are focused on a wide range of therapeutic assets, including small molecule, antibody, peptide/protein, cell therapy, and other. The 2023 cohort kicks off their nine-month program in January.

The participants include:

  1. Dr. Amit K. Tripathi – UNT-Health Science Center
  2. Dr. Darshan Gandhi (ImproveBio, LLC)
  3. Dr. Frank McKeon (Tract Pharmaceutical) – University of Houston
  4. Dr. Hemanta Baruah (Aakha Biologics)
  5. Dr. Joshua Gruber – UT-Southwestern
  6. Dr. Kyoji Tsuchikama – UT Health Science Center-Houston
  7. Dr. Maralice Conacci Sorrell – UT-Southwestern
  8. Dr. Michael Buszczak – UT-Southwestern
  9. Dr. Nadezhda (Nadia) German -Texas Tech-Lubbock
  10. Dr. Parsa Modareszadeh (HemePro Therapeutics) – UT-Dallas
  11. Dr. Robert Kruse (HydroGene Therapeutics)
  12. Dr. Xiang Zhang – Baylor College of Medicine
  13. Dr. Youngwook Won (Singular Immune, Inc.)
  14. Dr. Zhi-Ping Liu (Raphael Pharmaceutical LLC) – UT-Southwestern
  15. Dr. Jonathan Arambula (InnovoTEX Inc.)
  16. Dr. Isaac Chan – UT-Southwestern
  17. Dr. Olga Granaturova (Ruptakine Inc.) – UT Health Science Center-Houston
  18. Dr. Jim Song (Tranquility Biodesign) – Texas A&M-College Station
  19. Dr. Rosa Selenia Guerra-Resendez (Quetzal Bio, LLC) – Rice University
  20. Dr. Cassian Yee (Mongoose Bio, LLC) – UT-MD Anderson Cancer Center
  21. Dr. Manjeet Rao (Niragen, Inc.) – UT Health Science Center-San Antonio


These nine companies are headed to Houston. Photo courtesy of TMC

TMC Innovation names 9 companies to its latest bootcamp

coming soon to Hou

Nine startups hailing from as far away as Sydney, Australia, are en route to Houston to participate in a week-long program at the Texas Medical Center's Innovation Factory.

The 2022 TMCi Accelerator for HealthTech Bootcamp is looking to accelerate these startups, which specialize in health tech innovation across the spectrum — maternal medicine, mental health, diagnostics, patient experience, and artificial intelligence.

“One of the things I love about Bootcamp is the opportunity to showcase the diversity of innovation our ecosystem attracts," says Devin Dunn, head of the Accelerator for Healthtech, in a news release. "The breadth of clinical and operational expertise in our Medical Campus creates a unique learning ground, truly unmatched. Our tailored accelerator program allows for an experience that is personalized to each company’s stage, specialty and growth objectives.”

After the week at TMC, a smaller group of startups will be accepted into the TMCi Accelerator, a six-month program focused on maturing strategic relationships.

“Startup companies who are impacting the future of healthcare need clinical evidence to validate their value proposition and grow their businesses," says Emily Reiser, associate director of TMC Innovation, in the release. "Our platform at the TMC sources the best talent from around the world, performs rigorous diligence, and brings entrepreneurs together with our dedicated network to drive value for each stakeholder. We are seeing this value proposition resonate with entrepreneurs, including international companies preparing to enter the US market”

The nine startups that will be participating in the program, per the news release, include:

  • Based in Roseville, Minneapolis, Bloom Standard is deploying the first self-driving pediatric ultrasound to earlier diagnose heart and lung conditions in primary care, remote and under-resourced settings.
  • Echo IQ, headquartered in Sydney, is a screening program that applies a proprietary algorithm to produce risk assessments for patients using their echocardiographic measurements.
  • San Francisco-based Ejenta automates remote monitoring and care using AI technology exclusively licensed from NASA. “Intelligent agents” learn from connected devices, claims and EMR data to monitor patients, predict health and to provide automated support for patients and automated workflow for clinicians.
  • Kintsugi, based in Berkley, California, is on a mission to see mental health more clearly by developing novel voice biomarker infrastructure to detect signs of depression and anxiety from short clips of free-form speech.
  • San Francisco-based Lana Health is modernizing patient experiences, across the care continuum with an end-to-end, scalable platform, enabling frictionless care transitions, high patient satisfaction, and better clinical outcomes.
  • Liberate Medical, from Crestwood, Kentucky, improves outcomes for mechanically ventilated patients using its breakthrough, non-invasive, respiratory muscle-protective, neurostimulation device, VentFree.
  • Limbix, headquartered in Palo Alto, has a mission to improve mental health with accessible technology.
  • Nua Surgical, from Galway, Ireland, Nua Surgical is an award-winning Irish start-up dedicated to innovating in women’s health.
  • Houston-based Prana Thoracic is developing solutions for the detection and intervention of early-stage lung cancer.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”