According to a new report, Houston has potential to lead three life science subsectors: cell and gene therapy manufacturing, molecular diagnostics, and biologics drug development and manufacturing. Photo via Getty Images

A new report found that Houston has great potential across a handful of life science subsectors.

The study by Newmark Consulting Group was commissioned by the Greater Houston Partnership and sponsored by San Jacinto College, Lone Star College, Houston Community College, and McCord Development. It looked at the region's existing resources and value proposition in the life sciences sector.

According to the report, Houston is home to industry-leading expertise in three subsectors: cell and gene therapy manufacturing, molecular diagnostics, and biologics drug development and manufacturing.

From a workforce perspective, the city has a steady flow of new talent from regional universities and "an emerging and robust commitment by community colleges to support two-year degree pathways to meet industry demands and the ability for life science companies to grow and thrive in the market," per the report. The findings led to identifying the next steps for the Houston region to capitalize on these advantages.

“The Newmark study confirms what we knew to be true about the potential for life sciences growth in Houston,” says Susan Davenport, GHP's chief economic development officer, in a news release. “The study will help us coalesce our regional partners around a cohesive strategy to grow and expand the industry in Houston.”

The report's other key findings included:

  • Houston consistently ranks as a top-15 market for life sciences employment nationwide and first in Texas with nearly 700 life science companies operating in town.
  • The Bayou City has the densest patient population in the world, which allows for transformational clinical applications.
  • The city's diverse workforce, extensive university ecosystem, education infrastructure, and research institutions sets a scene for Houston to capture extensive subsector gains.
  • Houston ranks second in the nation in clinical trial volume with more than 4,600 currently active clinical trials, which is representing 15 percent of all active U.S. trials.
  • In 2021, Houston-area institutions attracted $864.1 million in grant funding from the National Institutes of Health, which is up 16.3 percent from 2020. On average over the past five years, the region received $740.7 million per year in NIH funding for a total of $3.9 billion.
  • Houston is home to more than 26,000 non-healthcare life science employees.
  • The region's life sciences workforce ranks No. 12 in the nation, on par with numbers reported for Research Triangle Park.
In light of the report, the GHP is recommending a few action items, including "accelerating workforce development programs to produce new graduates in key life sciences occupations, refining Houston’s marketing messages to highlight the region’s existing life science assets and activities within life science R&D and manufacturing," per the report. Additionally, the GHP identified the need to develop a shared regional strategy to attract and retain leading life sciences companies.
To lead these initiatives, the GHP has assembled task forces, which will be led by the organization’s Life Sciences Committee, chaired by Ferran Prat, senior vice president of Industry Relations and Research at MD Anderson Cancer Center.
Houston — home to the largest medical center — ranks No. 13 on a list of top life science labor markets. Photo via TMC

Here's how Houston ranks as a life science market, according to a new report

by the numbers

For Houston’s life sciences sector, 13 is a very lucky number.

The Houston metro area ranks 13th in CBRE’s first-ever analysis of the country’s top 25 U.S. labor markets for life sciences. Houston’s collective brain power helped cement its place on the list.

The Boston-Cambridge area tops the ranking. Houston is the highest-ranked Texas market, ahead of No. 16 Dallas-Fort Worth and No. 18 Austin.

Dallas-based CBRE, a provider of commercial real estate services, lauds Houston for its “attractive combination” of affordability and a deep pool of Ph.D.-level talent, as well as the presence of major research universities and medical institutions.

Scott Carter, senior vice president of life sciences and healthcare in CBRE’s Houston office, says those factors make Houston “an attractive market for life sciences industry expansion.”

“Houston is projected to lead the nation in population growth over the next five years, which will only strengthen the appeal of its labor market,” Carter says.

Houston boasts the nation’s highest wages in the life sciences sector compared with the cost of living, the analysis shows. Meanwhile, Ph.D. recipients account for 18.5 percent of the 1,300 biological and biomedical sciences degrees granted each year in the Houston area — the highest concentration nationwide. And Houston produces 4.2 percent of such Ph.D. recipients in the U.S. — more than all but a few major life sciences markets do.

“Millions of square feet and billions of dollars of life sciences development is underway or planned in Houston to break down longtime silos between commercial, academic, and medical sectors,” Carter says. “Leveraging the unmatched scale of the Texas Medical Center, these new moon-shot investments are building a launchpad to rocket Space City into a new era as a global hub for scientific and human progress.”

Underscoring the rapid rise of the city’s innovation ecosystem, Houston enjoys one of the country’s fastest-growing pipelines for VC funding in life sciences. Here, VC funding in the sector rose 937 percent in the past five years, compared with the nationwide increase of 345 percent, according to CBRE.

For its analysis, CBRE assessed each market based on several criteria, including its number of life sciences jobs and graduates, its share of the overall job and graduate pool in life sciences, its number of Ph.D. recipients in life sciences, and its concentration of jobs in the broader professional, scientific, and technical services professions.

In 2020, CBRE ranked Houston as the No. 2 emerging hub for life sciences in a report, which factored in size and growth of life-sciences employment, the venture capital and National Institutes of Health funding, and more.

Atul Varadhachary, managing partner of Fannin Innovation Studio, says that now is the time to invest in life sciences. Photo via Getty Images

Innovation studio aims to put Houston on the map for life science startup development

fostering innovation

In a report last year from commercial real estate services company JLL, Boston took the crown for hosting the country's top life sciences ecosystem. Houston ranked 11th.

The difference between Houston and Boston "is not the innovation, it's not the technology, it's not the money. It's that we don't have experienced life sciences entrepreneurs," says Dr. Atul Varadhachary, managing partner of Houston's Fannin Innovation Studio, a for-profit entity that commercializes biotech and medtech concepts.

Fannin has tried to replicate Boston's robust life sciences ecosystem "in a really, really tiny way" via its fellowship program, Varadhachary says. But the reach of the program could be even greater, he believes.

Varadhachary makes a case for tripling or even quadrupling the number of participants in Fannin's federally accredited fellowship program. He says this one relatively small investment could push Houston closer to Boston in the life sciences stratosphere.

Atul Varadhachary is the managing partner of Houston's Fannin Innovation Studio. Photo via fannininnovation.com

To be sure, Houston is no slouch in life sciences. For instance, commercial real estate services company CBRE issued a report last fall ranking Houston second among the country's top emerging clusters for life sciences. But cities like Boston, San Francisco, and San Diego still reign as life sciences royalty in the U.S.

Fannin typically taps five people at a time — folks who've recently earned a master's degree, medical degree or PhD — for a two-year fellowship in life sciences entrepreneurship and commercialization. The initiative is comparable to a post-doctorate program in research or medicine. The Fannin fellows collaborate with therapeutics and medical device companies in the studio's portfolio, gaining hands-on training in facets of business like R&D, intellectual property, regulatory matters, and financing.

Today, five fellows and seven interns work at Fannin. The fellowship program launched in 2006; the internship program started a year earlier. In all, Fannin has welcomed more than 250 fellows and interns. Some of them have gone on to work at Houston organizations such as TMC Innovation, MD Anderson Cancer Center, and the University of Houston.

Varadhachary believes boosting the fellowship headcount to perhaps 15 instead of the current five would be a small price to pay to help elevate Houston's status in life sciences. The full cost of each fellowship is less than $100,000 a year, so bringing aboard another 10 fellows would require an extra annual commitment of under $1 million. That kind of money isn't in Fannin's budget, though.

"I can think of nothing that could give a bigger return on investment for the city," Varadhachary says of expanding Fannin's fellowship program.

More fellows would mean more entrepreneurs equipped to run or start life sciences businesses in Houston, he says. Varadhachary acknowledges the value of efforts like the soon-to-open TMC3 life sciences hub and the recently opened Ion entrepreneurship hub, but he'd like to see more emphasis placed on nurturing people and not just startups.

Varadhachary says the "the one single thing" that Houston could do to increase its probability of success in life sciences, particularly in therapeutics, would be to crank up cultivation of entrepreneurial talent.

"By and large, I don't think know that this community appreciates how important and how under-resourced that whole people-development piece is," he says. "It's not something that comes from taking classes or watching. It comes from doing."

Andrea Letkeman, director of professional development at Fannin, says the fellows initially work one-on-one with a senior executive on projects, then eventually graduate to running their own projects. Fellows also get a close-up look at other projects underway at Fannin.

Varadhachary wants to get Fannin fellows excited "about what we're doing in Houston, and then give them an opportunity to be part of our ecosystem."

Some Fannin fellows have been hired on a full-time basis by the studio, or they've moved into jobs at venture capital firms, life sciences startups, or other players in the ecosystem, according to Letkeman. She says the fellows lend "energy and vibrancy" to Fannin.

"I think that the Fannin model is fairly unique for Houston. There are models that are similar, across the country, to what we do. But there's not enough of them, quite frankly, for the number of people that are interested in these kinds of roles," Letkeman says.

"There is talent that is looking for a way to bridge the gap between academia and real-world commercialization," she adds. "There's just not enough opportunities out there for them."

Kevin Coker, CEO of Proxima Clinical Research, say his company transform from uncertainty to almost uncontrollable growth in just 12 months. He shares what happened on this week's episode of the Houston Innovators Podcast. Photo courtesy of Proxima

Houston health tech company bounces back from COVID-19 in a big way

HOUSTON INNOVATORS PODCAST EPISODE 82

The pandemic hit life science innovation hard. And no one knows that better than Kevin Coker, co-founder and CEO of Proxima Clinical Research, a Houston-based contract research organization focused on supporting life science startups as they grow and scale.

"Last year from January to June, it was very tough," Coker says on this week's episode of the Houston Innovators Podcast. "Hospitals shut down, so any existing projects we had ongoing just halted."

Coker and his team of 12 — including co-founder and chairman, Larry Lawson — at the time didn't have any new projects coming in and were at the mercy of the pandemic.

"Everything was flat. In May, I was starting to worry. I didn't know how long we were going to have to weather the storm," Coker remembers.

Then, in June, things started changing, he says. As hospitals started to reopen and clinical research was reignited. Initially, some COVID diagnostic products were gaining momentum, as well as some emergency use authorization products.

"Things just really started taking off for us," Coker says. "I think it was really a product of investors and people being able to make decisions despite the pandemic."

Coker describes the experience not as a rollercoaster — it was all downhill for Proxima and then business took flight. Last quarter, the company was signing a new contract every two to three days. With the influx of projects, Coker says his team scaled to 50 full time employees and 75 part time team members — most of these new additions Coker hasn't even met yet, since the staff has been working remotely.

"We're a good barometer for what's happening not only locally but across the country," Coker says. "As Proxima has grown, it's really show how the Houston life science market is growing."

Now, Coker is focused on maintaining the company culture at Proxima as well as finding a new, larger office space in the Texas Medical Center — Proxima's current office is in the TMC Innovation Institute.

Coker says it's his intention to keep its operations smaller and more hands on than the usual CRO, which typically has 5,000 to 10,000 employees and multi-billion dollars in revenue, and focused on startups and small companies.

"That type of organization doesn't work well with a small med device or pharmaceutical company. We wanted to create a company that looked and felt like the startups," he says.

Coker shares more about Proxima's growth and Houston's potential of being a major life science hub on the episode. Listen to the full interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”

Aegis Aerospace appoints Houston space leader as new president

moving up

Houston-based Aegis Aerospace's current chief strategy officer, Matt Ondler, will take on the additional role of president on Jan. 1. Ondler will succeed Bill Hollister, who is retiring.

“Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers,” Stephanie Murphy, CEO of Aegis Aerospace, said in a news release.

Hollister guided Aegis Aerospace through expansion and innovation in his three years as president, and will continue to serve in the role of chief technology officer (CTO) for six months and focus on the company's technical and intellectual property frameworks.

"Bill has played an instrumental role in shaping the success and growth of our company, and his contributions leave an indelible mark on both our culture and our achievements," Murphy said in a news release.

Ondler has a background in space hardware development and strategic leadership in government and commercial sectors. Ondler founded subsea robots and software company Houston Mechatronics, Inc., now known as Nauticus Robotics, and also served as president, CTO and CSO during a five-year tenure at Axiom Space. He held various roles in his 25 years at NASA and was also named to the Texas Aerospace Research and Space Economy Consortium Executive Committee last year.

"I am confident that with Matt at the helm as president and Bill supporting us as CTO, we will continue to build on our strong foundation and further elevate our impact in the space industry," Murphy said in a news release. "Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers."

Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

neuro research

Rice University launched its new Amyloid Mechanism and Disease Center last month, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases.

The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established.

The team will work to ultimately increase its understanding of amyloid processes and will collaborate with the Texas Medical Center to turn lab discoveries into real progress for patients. It will hold its launch event on Jan. 21, 2026, and hopes to eventually be a launchpad for future external research funding.

The new hub will be led by Pernilla Wittung-Stafshed, a Rice biophysicist and the Charles W. Duncan Jr.-Welch Chair in Chemistry.

“To make a real difference, we have to go all the way and find a cure,” Wittung-Stafshede said in a news release. “At Rice, with the Amyloid Mechanism and Disease Center as a catalyst, we have the people and ideas to open new doors toward solutions.”

Wittung-Stafshede, who was recruited to Rice through a Cancer Prevention and Research Institute of Texas grant this summer, has led pioneering work on how metal-binding proteins impact neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Her most recent study, published in Advanced Science, suggests a new way of understanding how amyloids may harm cells and consume the brain’s energy molecule, ATP.

According to Alzheimer’s Disease International, neurodegenerative disease cases could reach around 78 million by 2030 and 139 million by 2050. Wittung-Stafshede’s father died of dementia several years ago.

“This is close to my heart,” Wittung-Stafshede added in the news release. “Neurodegenerative diseases such as dementia, Alzheimer’s and Parkinson’s are on the rise as people live longer, and age is the largest risk factor. It affects everyone.”