According to a new report, Houston has potential to lead three life science subsectors: cell and gene therapy manufacturing, molecular diagnostics, and biologics drug development and manufacturing. Photo via Getty Images

A new report found that Houston has great potential across a handful of life science subsectors.

The study by Newmark Consulting Group was commissioned by the Greater Houston Partnership and sponsored by San Jacinto College, Lone Star College, Houston Community College, and McCord Development. It looked at the region's existing resources and value proposition in the life sciences sector.

According to the report, Houston is home to industry-leading expertise in three subsectors: cell and gene therapy manufacturing, molecular diagnostics, and biologics drug development and manufacturing.

From a workforce perspective, the city has a steady flow of new talent from regional universities and "an emerging and robust commitment by community colleges to support two-year degree pathways to meet industry demands and the ability for life science companies to grow and thrive in the market," per the report. The findings led to identifying the next steps for the Houston region to capitalize on these advantages.

“The Newmark study confirms what we knew to be true about the potential for life sciences growth in Houston,” says Susan Davenport, GHP's chief economic development officer, in a news release. “The study will help us coalesce our regional partners around a cohesive strategy to grow and expand the industry in Houston.”

The report's other key findings included:

  • Houston consistently ranks as a top-15 market for life sciences employment nationwide and first in Texas with nearly 700 life science companies operating in town.
  • The Bayou City has the densest patient population in the world, which allows for transformational clinical applications.
  • The city's diverse workforce, extensive university ecosystem, education infrastructure, and research institutions sets a scene for Houston to capture extensive subsector gains.
  • Houston ranks second in the nation in clinical trial volume with more than 4,600 currently active clinical trials, which is representing 15 percent of all active U.S. trials.
  • In 2021, Houston-area institutions attracted $864.1 million in grant funding from the National Institutes of Health, which is up 16.3 percent from 2020. On average over the past five years, the region received $740.7 million per year in NIH funding for a total of $3.9 billion.
  • Houston is home to more than 26,000 non-healthcare life science employees.
  • The region's life sciences workforce ranks No. 12 in the nation, on par with numbers reported for Research Triangle Park.
In light of the report, the GHP is recommending a few action items, including "accelerating workforce development programs to produce new graduates in key life sciences occupations, refining Houston’s marketing messages to highlight the region’s existing life science assets and activities within life science R&D and manufacturing," per the report. Additionally, the GHP identified the need to develop a shared regional strategy to attract and retain leading life sciences companies.
To lead these initiatives, the GHP has assembled task forces, which will be led by the organization’s Life Sciences Committee, chaired by Ferran Prat, senior vice president of Industry Relations and Research at MD Anderson Cancer Center.
Houston — home to the largest medical center — ranks No. 13 on a list of top life science labor markets. Photo via TMC

Here's how Houston ranks as a life science market, according to a new report

by the numbers

For Houston’s life sciences sector, 13 is a very lucky number.

The Houston metro area ranks 13th in CBRE’s first-ever analysis of the country’s top 25 U.S. labor markets for life sciences. Houston’s collective brain power helped cement its place on the list.

The Boston-Cambridge area tops the ranking. Houston is the highest-ranked Texas market, ahead of No. 16 Dallas-Fort Worth and No. 18 Austin.

Dallas-based CBRE, a provider of commercial real estate services, lauds Houston for its “attractive combination” of affordability and a deep pool of Ph.D.-level talent, as well as the presence of major research universities and medical institutions.

Scott Carter, senior vice president of life sciences and healthcare in CBRE’s Houston office, says those factors make Houston “an attractive market for life sciences industry expansion.”

“Houston is projected to lead the nation in population growth over the next five years, which will only strengthen the appeal of its labor market,” Carter says.

Houston boasts the nation’s highest wages in the life sciences sector compared with the cost of living, the analysis shows. Meanwhile, Ph.D. recipients account for 18.5 percent of the 1,300 biological and biomedical sciences degrees granted each year in the Houston area — the highest concentration nationwide. And Houston produces 4.2 percent of such Ph.D. recipients in the U.S. — more than all but a few major life sciences markets do.

“Millions of square feet and billions of dollars of life sciences development is underway or planned in Houston to break down longtime silos between commercial, academic, and medical sectors,” Carter says. “Leveraging the unmatched scale of the Texas Medical Center, these new moon-shot investments are building a launchpad to rocket Space City into a new era as a global hub for scientific and human progress.”

Underscoring the rapid rise of the city’s innovation ecosystem, Houston enjoys one of the country’s fastest-growing pipelines for VC funding in life sciences. Here, VC funding in the sector rose 937 percent in the past five years, compared with the nationwide increase of 345 percent, according to CBRE.

For its analysis, CBRE assessed each market based on several criteria, including its number of life sciences jobs and graduates, its share of the overall job and graduate pool in life sciences, its number of Ph.D. recipients in life sciences, and its concentration of jobs in the broader professional, scientific, and technical services professions.

In 2020, CBRE ranked Houston as the No. 2 emerging hub for life sciences in a report, which factored in size and growth of life-sciences employment, the venture capital and National Institutes of Health funding, and more.

Atul Varadhachary, managing partner of Fannin Innovation Studio, says that now is the time to invest in life sciences. Photo via Getty Images

Innovation studio aims to put Houston on the map for life science startup development

fostering innovation

In a report last year from commercial real estate services company JLL, Boston took the crown for hosting the country's top life sciences ecosystem. Houston ranked 11th.

The difference between Houston and Boston "is not the innovation, it's not the technology, it's not the money. It's that we don't have experienced life sciences entrepreneurs," says Dr. Atul Varadhachary, managing partner of Houston's Fannin Innovation Studio, a for-profit entity that commercializes biotech and medtech concepts.

Fannin has tried to replicate Boston's robust life sciences ecosystem "in a really, really tiny way" via its fellowship program, Varadhachary says. But the reach of the program could be even greater, he believes.

Varadhachary makes a case for tripling or even quadrupling the number of participants in Fannin's federally accredited fellowship program. He says this one relatively small investment could push Houston closer to Boston in the life sciences stratosphere.

Atul Varadhachary is the managing partner of Houston's Fannin Innovation Studio. Photo via fannininnovation.com

To be sure, Houston is no slouch in life sciences. For instance, commercial real estate services company CBRE issued a report last fall ranking Houston second among the country's top emerging clusters for life sciences. But cities like Boston, San Francisco, and San Diego still reign as life sciences royalty in the U.S.

Fannin typically taps five people at a time — folks who've recently earned a master's degree, medical degree or PhD — for a two-year fellowship in life sciences entrepreneurship and commercialization. The initiative is comparable to a post-doctorate program in research or medicine. The Fannin fellows collaborate with therapeutics and medical device companies in the studio's portfolio, gaining hands-on training in facets of business like R&D, intellectual property, regulatory matters, and financing.

Today, five fellows and seven interns work at Fannin. The fellowship program launched in 2006; the internship program started a year earlier. In all, Fannin has welcomed more than 250 fellows and interns. Some of them have gone on to work at Houston organizations such as TMC Innovation, MD Anderson Cancer Center, and the University of Houston.

Varadhachary believes boosting the fellowship headcount to perhaps 15 instead of the current five would be a small price to pay to help elevate Houston's status in life sciences. The full cost of each fellowship is less than $100,000 a year, so bringing aboard another 10 fellows would require an extra annual commitment of under $1 million. That kind of money isn't in Fannin's budget, though.

"I can think of nothing that could give a bigger return on investment for the city," Varadhachary says of expanding Fannin's fellowship program.

More fellows would mean more entrepreneurs equipped to run or start life sciences businesses in Houston, he says. Varadhachary acknowledges the value of efforts like the soon-to-open TMC3 life sciences hub and the recently opened Ion entrepreneurship hub, but he'd like to see more emphasis placed on nurturing people and not just startups.

Varadhachary says the "the one single thing" that Houston could do to increase its probability of success in life sciences, particularly in therapeutics, would be to crank up cultivation of entrepreneurial talent.

"By and large, I don't think know that this community appreciates how important and how under-resourced that whole people-development piece is," he says. "It's not something that comes from taking classes or watching. It comes from doing."

Andrea Letkeman, director of professional development at Fannin, says the fellows initially work one-on-one with a senior executive on projects, then eventually graduate to running their own projects. Fellows also get a close-up look at other projects underway at Fannin.

Varadhachary wants to get Fannin fellows excited "about what we're doing in Houston, and then give them an opportunity to be part of our ecosystem."

Some Fannin fellows have been hired on a full-time basis by the studio, or they've moved into jobs at venture capital firms, life sciences startups, or other players in the ecosystem, according to Letkeman. She says the fellows lend "energy and vibrancy" to Fannin.

"I think that the Fannin model is fairly unique for Houston. There are models that are similar, across the country, to what we do. But there's not enough of them, quite frankly, for the number of people that are interested in these kinds of roles," Letkeman says.

"There is talent that is looking for a way to bridge the gap between academia and real-world commercialization," she adds. "There's just not enough opportunities out there for them."

Kevin Coker, CEO of Proxima Clinical Research, say his company transform from uncertainty to almost uncontrollable growth in just 12 months. He shares what happened on this week's episode of the Houston Innovators Podcast. Photo courtesy of Proxima

Houston health tech company bounces back from COVID-19 in a big way

HOUSTON INNOVATORS PODCAST EPISODE 82

The pandemic hit life science innovation hard. And no one knows that better than Kevin Coker, co-founder and CEO of Proxima Clinical Research, a Houston-based contract research organization focused on supporting life science startups as they grow and scale.

"Last year from January to June, it was very tough," Coker says on this week's episode of the Houston Innovators Podcast. "Hospitals shut down, so any existing projects we had ongoing just halted."

Coker and his team of 12 — including co-founder and chairman, Larry Lawson — at the time didn't have any new projects coming in and were at the mercy of the pandemic.

"Everything was flat. In May, I was starting to worry. I didn't know how long we were going to have to weather the storm," Coker remembers.

Then, in June, things started changing, he says. As hospitals started to reopen and clinical research was reignited. Initially, some COVID diagnostic products were gaining momentum, as well as some emergency use authorization products.

"Things just really started taking off for us," Coker says. "I think it was really a product of investors and people being able to make decisions despite the pandemic."

Coker describes the experience not as a rollercoaster — it was all downhill for Proxima and then business took flight. Last quarter, the company was signing a new contract every two to three days. With the influx of projects, Coker says his team scaled to 50 full time employees and 75 part time team members — most of these new additions Coker hasn't even met yet, since the staff has been working remotely.

"We're a good barometer for what's happening not only locally but across the country," Coker says. "As Proxima has grown, it's really show how the Houston life science market is growing."

Now, Coker is focused on maintaining the company culture at Proxima as well as finding a new, larger office space in the Texas Medical Center — Proxima's current office is in the TMC Innovation Institute.

Coker says it's his intention to keep its operations smaller and more hands on than the usual CRO, which typically has 5,000 to 10,000 employees and multi-billion dollars in revenue, and focused on startups and small companies.

"That type of organization doesn't work well with a small med device or pharmaceutical company. We wanted to create a company that looked and felt like the startups," he says.

Coker shares more about Proxima's growth and Houston's potential of being a major life science hub on the episode. Listen to the full interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston space company lands latest NASA deal to advance lunar logistics

To The Moon

Houston-based space exploration, infrastructure, and services company Intuitive Machines has secured about $2.5 million from NASA to study challenges related to carrying cargo on the company’s lunar lander and hauling cargo on the moon. The lander will be used for NASA’s Artemis missions to the moon and eventually to Mars.

“Intuitive Machines has been methodically working on executing lunar delivery, data transmission, and infrastructure service missions, making us uniquely positioned to provide strategies and concepts that may shape lunar logistics and mobility solutions for the Artemis generation,” Intuitive Machines CEO Steve Altemus says in a news release.

“We look forward to bringing our proven expertise together to deliver innovative solutions that establish capabilities on the [moon] and place deeper exploration within reach.”

Intuitive Machines will soon launch its lunar lander on a SpaceX Falcon 9 rocket to deliver NASA technology and science projects, along with commercial payloads, to the moon’s Mons Mouton plateau. Lift-off will happen at NASA’s Kennedy Space Center in Florida within a launch window that starts in late February. It’ll be the lander’s second trip to the moon.

In September, Intuitive Machines landed a deal with NASA that could be worth more than $4.8 billion.

Under the contract, Intuitive Machines will supply communication and navigation services for missions in the “near space” region, which extends from the earth’s surface to beyond the moon.

The five-year deal includes an option to add five years to the contract. The initial round of NASA funding runs through September 2029.

Play it back: Houston home tech startup begins 2025 with fresh funding

HOUSTON INNOVATORS PODCAST EPISODE 272

One of the dozen or so Houston startups kicking of the new year with fresh funding is SmartAC.com, a company that's designed a platform that enables contractors in the HVAC and plumbing industries to monitor, manage, and optimize their maintenance memberships through advanced sensors, AI-driven diagnostics, and proactive alerts.

Last month, the SmartAC.com raised a follow-on round with support from local investor Mercury to continue growth and expansion of the product, which has evolved on many ways since the company launched in 2020, emerging from stealth with $10 million raised in a series A. In a May 2023 interview for the Houston Innovators Podcast, Founder and CEO Josh Teekell explained how he embraced the power of a pivot.

The company's sensors can monitor all aspects of air conditioning units and report back any issues, meaning homeowners have quicker and less costly repairs. While SmartAC.com started with providing the service and tech to homeowners directly, Teekell says he's had a greater interest in working with plumbers and HVAC companies who then deploy the technology to their customers.

"It became quite evident that homeowners don't care about air conditioning really at all until their system breaks," Teekell says on the show. "The technology is really built around giving those contractors as another way to gain a customer relationship and keep it."

Revisit the podcast episode below where Teekell talks about SmartAC.com's last raise.

SmartAC.com's previous round in 2023 — a $22 million series B — was used grow its team that goes out to deploy the technology and train the contractors on the platform.

"We've been very fortunate to get some of the biggest names in Houston on our cap table," Teekell says in the May 2023 conversation. "Since we're raising a bunch of money locally, everyone understands what a pain air conditioning can be."

Houston biotech company tests hard-to-fight cancer therapeutics

fighting cancer

A Houston-based, female-founded biotech company has developed a treatment that could prove to be an effective therapy for a rare blood cancer.

Cellenkos Therapeutics has completed promising Phase 1b testing of its Treg cell therapy, CK0804, in the fight against myelofibrosis. According to a news release from the Cellenkos team, the use of its cord-blood-derived therapeutics could signal a paradigm shift for the treatment of this hard-to-fight cancer.

Cellenkos was founded by MD Anderson Cancer Center physician and professor Simrit Parmar. Her research at the hospital displayed the ability of a unique subset of T cells’ capability to home in on a patient’s bone marrow, restoring immune balance, and potentially halting disease progression.

Myelofibrosis has long been treated primarily with JAK (Janus Kinase) inhibitors, medications that help to block inflammatory enzymes. They work by suppressing the immune response to the blood cancer, but don’t slow the progression of the malady. And they’re not effective for every patient.

“There is a significant need for new therapeutic options for patients living with myelofibrosis who have suboptimal responses to approved JAK inhibitors,” Parmar says. “We are greatly encouraged by the safety profile and early signs of efficacy observed in this patient cohort and look forward to continuing our evaluation of the clinical potential of CK0804 in our planned expansion cohort.”

The expansion cohort is currently enrolling patients with myelofibrosis. What exactly are sufferers dealing with? Myelofibrosis is a chronic disease that causes bone marrow to form scar tissue. This makes it difficult for the body to produce normal blood cells, leaving patients with fatigue, spleen enlargement and night sweats.

Myelofibrosis is rare, with just 16,000 to 18,500 people affected in the United States. But for patients who don’t respond well to JAKs, the prognosis could mean a shorter span than the six-year median survival rate outlined for the disease by Cleveland Clinic.

Helping myelofibrosis patients to thrive isn’t the only goal for Cellenkos right now.

The company seeks to aid people with rare conditions, particularly inflammatory and autoimmune disorders, with the use of CK0804, but also other candidates including one known as CK0801. The latter drug has shown promising efficacy in aplastic anemia, including transfusion independence in treated patients.

The company closed its $15 million series A round led by BVCF Management, based in Shanghai, in 2021. Read more here.