According to a new report, Houston has potential to lead three life science subsectors: cell and gene therapy manufacturing, molecular diagnostics, and biologics drug development and manufacturing. Photo via Getty Images

A new report found that Houston has great potential across a handful of life science subsectors.

The study by Newmark Consulting Group was commissioned by the Greater Houston Partnership and sponsored by San Jacinto College, Lone Star College, Houston Community College, and McCord Development. It looked at the region's existing resources and value proposition in the life sciences sector.

According to the report, Houston is home to industry-leading expertise in three subsectors: cell and gene therapy manufacturing, molecular diagnostics, and biologics drug development and manufacturing.

From a workforce perspective, the city has a steady flow of new talent from regional universities and "an emerging and robust commitment by community colleges to support two-year degree pathways to meet industry demands and the ability for life science companies to grow and thrive in the market," per the report. The findings led to identifying the next steps for the Houston region to capitalize on these advantages.

“The Newmark study confirms what we knew to be true about the potential for life sciences growth in Houston,” says Susan Davenport, GHP's chief economic development officer, in a news release. “The study will help us coalesce our regional partners around a cohesive strategy to grow and expand the industry in Houston.”

The report's other key findings included:

  • Houston consistently ranks as a top-15 market for life sciences employment nationwide and first in Texas with nearly 700 life science companies operating in town.
  • The Bayou City has the densest patient population in the world, which allows for transformational clinical applications.
  • The city's diverse workforce, extensive university ecosystem, education infrastructure, and research institutions sets a scene for Houston to capture extensive subsector gains.
  • Houston ranks second in the nation in clinical trial volume with more than 4,600 currently active clinical trials, which is representing 15 percent of all active U.S. trials.
  • In 2021, Houston-area institutions attracted $864.1 million in grant funding from the National Institutes of Health, which is up 16.3 percent from 2020. On average over the past five years, the region received $740.7 million per year in NIH funding for a total of $3.9 billion.
  • Houston is home to more than 26,000 non-healthcare life science employees.
  • The region's life sciences workforce ranks No. 12 in the nation, on par with numbers reported for Research Triangle Park.
In light of the report, the GHP is recommending a few action items, including "accelerating workforce development programs to produce new graduates in key life sciences occupations, refining Houston’s marketing messages to highlight the region’s existing life science assets and activities within life science R&D and manufacturing," per the report. Additionally, the GHP identified the need to develop a shared regional strategy to attract and retain leading life sciences companies.
To lead these initiatives, the GHP has assembled task forces, which will be led by the organization’s Life Sciences Committee, chaired by Ferran Prat, senior vice president of Industry Relations and Research at MD Anderson Cancer Center.
Houston — home to the largest medical center — ranks No. 13 on a list of top life science labor markets. Photo via TMC

Here's how Houston ranks as a life science market, according to a new report

by the numbers

For Houston’s life sciences sector, 13 is a very lucky number.

The Houston metro area ranks 13th in CBRE’s first-ever analysis of the country’s top 25 U.S. labor markets for life sciences. Houston’s collective brain power helped cement its place on the list.

The Boston-Cambridge area tops the ranking. Houston is the highest-ranked Texas market, ahead of No. 16 Dallas-Fort Worth and No. 18 Austin.

Dallas-based CBRE, a provider of commercial real estate services, lauds Houston for its “attractive combination” of affordability and a deep pool of Ph.D.-level talent, as well as the presence of major research universities and medical institutions.

Scott Carter, senior vice president of life sciences and healthcare in CBRE’s Houston office, says those factors make Houston “an attractive market for life sciences industry expansion.”

“Houston is projected to lead the nation in population growth over the next five years, which will only strengthen the appeal of its labor market,” Carter says.

Houston boasts the nation’s highest wages in the life sciences sector compared with the cost of living, the analysis shows. Meanwhile, Ph.D. recipients account for 18.5 percent of the 1,300 biological and biomedical sciences degrees granted each year in the Houston area — the highest concentration nationwide. And Houston produces 4.2 percent of such Ph.D. recipients in the U.S. — more than all but a few major life sciences markets do.

“Millions of square feet and billions of dollars of life sciences development is underway or planned in Houston to break down longtime silos between commercial, academic, and medical sectors,” Carter says. “Leveraging the unmatched scale of the Texas Medical Center, these new moon-shot investments are building a launchpad to rocket Space City into a new era as a global hub for scientific and human progress.”

Underscoring the rapid rise of the city’s innovation ecosystem, Houston enjoys one of the country’s fastest-growing pipelines for VC funding in life sciences. Here, VC funding in the sector rose 937 percent in the past five years, compared with the nationwide increase of 345 percent, according to CBRE.

For its analysis, CBRE assessed each market based on several criteria, including its number of life sciences jobs and graduates, its share of the overall job and graduate pool in life sciences, its number of Ph.D. recipients in life sciences, and its concentration of jobs in the broader professional, scientific, and technical services professions.

In 2020, CBRE ranked Houston as the No. 2 emerging hub for life sciences in a report, which factored in size and growth of life-sciences employment, the venture capital and National Institutes of Health funding, and more.

Atul Varadhachary, managing partner of Fannin Innovation Studio, says that now is the time to invest in life sciences. Photo via Getty Images

Innovation studio aims to put Houston on the map for life science startup development

fostering innovation

In a report last year from commercial real estate services company JLL, Boston took the crown for hosting the country's top life sciences ecosystem. Houston ranked 11th.

The difference between Houston and Boston "is not the innovation, it's not the technology, it's not the money. It's that we don't have experienced life sciences entrepreneurs," says Dr. Atul Varadhachary, managing partner of Houston's Fannin Innovation Studio, a for-profit entity that commercializes biotech and medtech concepts.

Fannin has tried to replicate Boston's robust life sciences ecosystem "in a really, really tiny way" via its fellowship program, Varadhachary says. But the reach of the program could be even greater, he believes.

Varadhachary makes a case for tripling or even quadrupling the number of participants in Fannin's federally accredited fellowship program. He says this one relatively small investment could push Houston closer to Boston in the life sciences stratosphere.

Atul Varadhachary is the managing partner of Houston's Fannin Innovation Studio. Photo via fannininnovation.com

To be sure, Houston is no slouch in life sciences. For instance, commercial real estate services company CBRE issued a report last fall ranking Houston second among the country's top emerging clusters for life sciences. But cities like Boston, San Francisco, and San Diego still reign as life sciences royalty in the U.S.

Fannin typically taps five people at a time — folks who've recently earned a master's degree, medical degree or PhD — for a two-year fellowship in life sciences entrepreneurship and commercialization. The initiative is comparable to a post-doctorate program in research or medicine. The Fannin fellows collaborate with therapeutics and medical device companies in the studio's portfolio, gaining hands-on training in facets of business like R&D, intellectual property, regulatory matters, and financing.

Today, five fellows and seven interns work at Fannin. The fellowship program launched in 2006; the internship program started a year earlier. In all, Fannin has welcomed more than 250 fellows and interns. Some of them have gone on to work at Houston organizations such as TMC Innovation, MD Anderson Cancer Center, and the University of Houston.

Varadhachary believes boosting the fellowship headcount to perhaps 15 instead of the current five would be a small price to pay to help elevate Houston's status in life sciences. The full cost of each fellowship is less than $100,000 a year, so bringing aboard another 10 fellows would require an extra annual commitment of under $1 million. That kind of money isn't in Fannin's budget, though.

"I can think of nothing that could give a bigger return on investment for the city," Varadhachary says of expanding Fannin's fellowship program.

More fellows would mean more entrepreneurs equipped to run or start life sciences businesses in Houston, he says. Varadhachary acknowledges the value of efforts like the soon-to-open TMC3 life sciences hub and the recently opened Ion entrepreneurship hub, but he'd like to see more emphasis placed on nurturing people and not just startups.

Varadhachary says the "the one single thing" that Houston could do to increase its probability of success in life sciences, particularly in therapeutics, would be to crank up cultivation of entrepreneurial talent.

"By and large, I don't think know that this community appreciates how important and how under-resourced that whole people-development piece is," he says. "It's not something that comes from taking classes or watching. It comes from doing."

Andrea Letkeman, director of professional development at Fannin, says the fellows initially work one-on-one with a senior executive on projects, then eventually graduate to running their own projects. Fellows also get a close-up look at other projects underway at Fannin.

Varadhachary wants to get Fannin fellows excited "about what we're doing in Houston, and then give them an opportunity to be part of our ecosystem."

Some Fannin fellows have been hired on a full-time basis by the studio, or they've moved into jobs at venture capital firms, life sciences startups, or other players in the ecosystem, according to Letkeman. She says the fellows lend "energy and vibrancy" to Fannin.

"I think that the Fannin model is fairly unique for Houston. There are models that are similar, across the country, to what we do. But there's not enough of them, quite frankly, for the number of people that are interested in these kinds of roles," Letkeman says.

"There is talent that is looking for a way to bridge the gap between academia and real-world commercialization," she adds. "There's just not enough opportunities out there for them."

Kevin Coker, CEO of Proxima Clinical Research, say his company transform from uncertainty to almost uncontrollable growth in just 12 months. He shares what happened on this week's episode of the Houston Innovators Podcast. Photo courtesy of Proxima

Houston health tech company bounces back from COVID-19 in a big way

HOUSTON INNOVATORS PODCAST EPISODE 82

The pandemic hit life science innovation hard. And no one knows that better than Kevin Coker, co-founder and CEO of Proxima Clinical Research, a Houston-based contract research organization focused on supporting life science startups as they grow and scale.

"Last year from January to June, it was very tough," Coker says on this week's episode of the Houston Innovators Podcast. "Hospitals shut down, so any existing projects we had ongoing just halted."

Coker and his team of 12 — including co-founder and chairman, Larry Lawson — at the time didn't have any new projects coming in and were at the mercy of the pandemic.

"Everything was flat. In May, I was starting to worry. I didn't know how long we were going to have to weather the storm," Coker remembers.

Then, in June, things started changing, he says. As hospitals started to reopen and clinical research was reignited. Initially, some COVID diagnostic products were gaining momentum, as well as some emergency use authorization products.

"Things just really started taking off for us," Coker says. "I think it was really a product of investors and people being able to make decisions despite the pandemic."

Coker describes the experience not as a rollercoaster — it was all downhill for Proxima and then business took flight. Last quarter, the company was signing a new contract every two to three days. With the influx of projects, Coker says his team scaled to 50 full time employees and 75 part time team members — most of these new additions Coker hasn't even met yet, since the staff has been working remotely.

"We're a good barometer for what's happening not only locally but across the country," Coker says. "As Proxima has grown, it's really show how the Houston life science market is growing."

Now, Coker is focused on maintaining the company culture at Proxima as well as finding a new, larger office space in the Texas Medical Center — Proxima's current office is in the TMC Innovation Institute.

Coker says it's his intention to keep its operations smaller and more hands on than the usual CRO, which typically has 5,000 to 10,000 employees and multi-billion dollars in revenue, and focused on startups and small companies.

"That type of organization doesn't work well with a small med device or pharmaceutical company. We wanted to create a company that looked and felt like the startups," he says.

Coker shares more about Proxima's growth and Houston's potential of being a major life science hub on the episode. Listen to the full interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Health tech startup launches Houston study improve stroke patients recovery

now enrolling

A Houston-born company is enrolling patients in a study to test the efficacy of nerve stimulation to improve outcomes for stroke survivors.

Dr. Kirt Gill and Joe Upchurch founded NeuraStasis in 2021 as part of the TMC Biodesign fellowship program.

“The idea for the company manifested during that year because both Joe and I had experiences with stroke survivors in our own lives,” Gill tells InnovationMap. It began for Gill when his former college roommate had a stroke in his twenties.

“It’s a very unpredictable, sudden disease with ramifications not just for my best friend but for everyone in his life. I saw what it did to his family and caregivers and it's one of those things that doesn't have as many solutions for people to continue recovery and to prevent damage and that's an area that I wanted to focus myself on in my career,” Gill explains.

Gill and Upchurch arrived at the trigeminal and vagus nerves as a potential key to helping stroke patients. Gill says that there is a growing amount of academic literature that talks about the efficacy of stimulating those nerves. The co-founders met Dr. Sean Savitz, the director of the UTHealth Institute for Stroke and Cerebrovascular Diseases, during their fellowship. He is now their principal investigator for their clinical feasibility study, located at his facility.

The treatment is targeted for patients who have suffered an ischemic stroke, meaning that it’s caused by a blockage of blood flow to the brain.

“Rehabilitation after a stroke is intended to help the brain develop new networks to compensate for permanently damaged areas,” Gill says. “But the recovery process typically slows to essentially a standstill or plateau by three to six months after that stroke. The result is that the majority of stroke survivors, around 7.6 million in the US alone, live with a form of disability that prevents complete independence afterwards.”

NeuraStasis’ technology is intended to help patients who are past that window. They accomplish that with a non-invasive brain-stimulation device that targets the trigeminal and vagus nerves.

“Think of it kind of like a wearable headset that enables stimulation to be delivered, paired to survivors going through rehabilitation action. So the goal here is to help reinforce and rewire networks as they're performing specific tasks that they're looking to improve upon,” Gill explains.

The study, which hopes to enroll around 25 subjects, is intended to help people with residual arm and hand deficits six months or more after their ischemic stroke. The patients enrolled will receive nerve stimulation three times a week for six weeks. It’s in this window that Gill says he hopes to see meaningful improvement in patients’ upper extremity deficits.

Though NeuraStasis currently boasts just its two co-founders as full-time employees, the company is seeing healthy growth. It was selected for a $1.1 million award from the National Institutes of Health through its Blueprint MedTech program. The award was funded by the National Institute of Neurological Disorders and Stroke. The funding furthers NeuraStasis’ work for two years, and supports product development for work on acute stroke and for another product that will aid in emergency situations.

Gill says that he believes “Houston has been tailor-made for medical healthcare-focused innovation.”

NeuraStasis, he continues, has benefited greatly from its advisors and mentors from throughout the TMC, as well as the engineering talent from Rice, University of Houston and Texas A&M. And the entrepreneur says that he hopes that Houston will benefit as much from NeuraStasis’ technology as the company has from its hometown.

“I know that there are people within the community that could benefit from our device,” he says.

Texas Space Commission launches, Houston execs named to leadership

future of space

Governor Greg Abbott announced the Texas Space Commission, naming its inaugural board of directors and Texas Aerospace Research and Space Economy Consortium Executive Committee.

The announcement came at NASA's Johnson Space Center, and the governor was joined by Speaker Dade Phelan, Representative Greg Bonnen, Representative Dennis Paul, NASA's Johnson Space Center Director Vanessa Wyche, and various aerospace industry leaders.

According to a news release, the Texas Space Commission will aim to strengthen commercial, civil, and military aerospace activity by promoting innovation in space exploration and commercial aerospace opportunities, which will include the integration of space, aeronautics, and aviation industries as part of the Texas economy.

The Commission will be governed by a nine-member board of directors. The board will also administer the legislatively created Space Exploration and Aeronautics Research Fund to provide grants to eligible entities.

“Texas is home to trailblazers and innovators, and we have a rich history of traversing the final frontier: space,” Lieutenant Governor Dan Patrick says in a news release. “Texas is and will continue to be the epicenter for the space industry across the globe, and I have total confidence that my appointees to the Texas Space Commission Board of Directors and the Texas Aerospace Research and Space Economy Consortium Executive Committee will ensure the Texas space industry remains an international powerhouse for cutting-edge space innovation.”

TARSEC will independently identify research opportunities that will assist the state’s position in aeronautics research and development, astronautics, space commercialization, and space flight infrastructure. It also plans to fuel the integration of space, aeronautics, astronautics, and aviation industries into the Texas economy. TARSEC will be governed by an executive committee and will be composed of representatives of each higher education institution in the state.

“Since its very inception, NASA’s Johnson Space Center has been home to manned spaceflight, propelling Texas as the national leader in the U.S. space program,” Abbott says during the announcement. “It was at Rice University where President John F. Kennedy announced that the U.S. would put a man on the moon—not because it was easy, but because it was hard.

"Now, with the Texas Space Commission, our great state will have a group that is responsible for dreaming and achieving the next generation of human exploration in space," he continues. "Texas is the launchpad for Mars, innovating the technology that will colonize humanity’s first new planet. As we look into the future of space, one thing is clear: those who reach for the stars do so from the great state of Texas. I look forward to working with the Texas Space Commission, and I thank the Texas Legislature for partnering with industry and higher education institutions to secure the future of Texas' robust space industry."

The Houston-area board of directors appointees included:

  • Gwen Griffin, chief executive officer of the Griffin Communications Group
  • John Shannon, vice president of Exploration Systems at the Boeing Company
  • Sarah "Sassie" Duggleby, co-founder and CEO of Venus Aerospace
  • Kirk Shireman, vice president of Lunar Exploration Campaigns at Lockheed Martin
  • Dr. Nancy Currie-Gregg, director of the Texas A&M Space Institute

Additionally, a few Houstonians were named to the TARSEC committee, including:

  • Stephanie Murphy, CEO and executive chairman of Aegis Aerospace
  • Matt Ondler, president and former chief technology officer at Axiom Space
  • Jack “2fish” Fischer, vice president of production and operations at Intuitive Machines
  • Brian Freedman, president of the Bay Area Houston Economic Partnership and vice chairman of Wellby Financial
  • David Alexander, professor of physics and astronomy and director of the Rice Space Institute at Rice University

To see the full list of appointed board and committee members, along with their extended bios, click here.