Mercury Data Science has officially rebranded as OmniScience. Photo via Getty Images

A Houston organization established to provide critical data science support to its clients has rebranded and entered into its latest era.

Mercury Data Science has officially rebranded as OmniScience. Founded in 2017 as a spin off of Mercury, a local venture capital group, the data science-focused software company is led by CEO Angela Holmes, who was named to the position in 2022.

"OmniScience signifies our commitment to being a force of innovation in data science and life sciences," Holmes says in the release. "The new brand mirrors our vision for the future, where data science is a driving force for positive change in life sciences."

Angela Holmes is the CEO of OmniScience. Photo via mercuryds.com

Per the news release, the rebranding aligns the company with its mission of supporting innovation at the intersection of biology and data science. The new name reflects the combination of "omniscient" and "science," according to the company.

OmniScience's technology helps its customers across the life science spectrum with navigating key data insights for clinical trials, purpose-built AI development, and other data science services, according to its website.

"This rebrand represents more than just a name change; it signals a bold step into the future, where OmniScience will play a pivotal role in shaping the data science landscape in life sciences," reads the release.

The firm is based out of Texas Medical Center Innovation and has over 20 employees listed on the website.

Atul Varadhachary of Fannin joins the Houston Innovators Podcast. Photo via LinkedIn

Houston innovator plays the long game of life science innovation with optimized capital efficiency

HOUSTON INNOVATORS PODCAST EPISODE 222

Commercializing a life science innovation that has the potential to enhance or even save the lives of millions of patients is a marathon, not a sprint. That's how Atul Varadhachary thinks of it, and he's leading an organization that's actively running that race for several different early-stage innovations.

For over a decade, Fannin has worked diligently to develop promising life science innovations — that start as just an idea or research subject — by garnering grant funding and using its team of expert product developers to build out the technology or treatment. The model is different from what you'd see at an accelerator or incubator, and it also varies from the path taken by an academic or research institution.

The life science innovation timeline is very different from a software startup's, which can get to an early prototype in less than a year.

"In biotech, to get to that minimally viable product, it can take a decade and tens of millions of dollars," Varadhachary, managing director at Fannin, says on the Houston Innovators Podcast.



Fannin addresses what Varadhachary calls a twin bottleneck in Houston's life science innovation ecosystem. Not only does Houston not attract the funding biotech startups need desperately to grow their companies, but hiring is a major issue as the city isn't home to an established labor pool of experienced product developers within the industry.

"The challenge is that product development is more complex — it requires innovation, but that's not sufficient. When you ask people why we lag in the product development in the life sciences — although we are home to the largest medical center in the country, we don't even make list of top 10 biotech clusters — the usual answer is that we don't have enough biotech investors," Varadhachary says.

"But that puts the cart before the horse," he continues. "Investors invest in people not just ideas. Although we have an amazing pool of researchers and clinicians, we lack experienced product developers."

In more ways than one, Fannin is addressing this problem. For all of its several ongoing programs, Fannin acts as the leadership team for the technologies. Its core employees — there are about 20 currently — work on all of the companies, which are developing a range life science innovations, from Brevitest, a point-of-use immunoassay platform, to Procyrion, an intra-aortic pump for congestive heart failure patients.

Fannin's programs also range in stage, which Varadhachary outlines on the show to be three different phases. The earliest stage programs will have Fannin's team working directly on early testing, product development, and grant writing, while the later stage programs will have built out a dedicated team and raise venture investment.

Another way Fannin is addressing Houston's lack of life science product developers is through its Fannin Talent Development Program, which has given around 350 individuals an opportunity to gain critical product development experience.

With 10 years under its belt, Fannin — as well as the greater Houston life science innovation ecosystem — is at a point where it can soon produce exits needed to firm up Houston as a life science leader.

"Clearly, we've got the base elements required to be a successful ecosystem, and they continue to grow," Varadhachary says of Houston. "Typically you need one or two really big success stories — especially if those success stories result in a company being sold, leaving behind experienced product developers with money in their pockets — that's often what will supercharge the next cycle of development. I'm hoping that will happen in Houston in the next five years, decade, or so."

Here's what Houston organizations are benefitting from the latest CPRIT funding announcement. Photo via Getty Images

Houston organizations snag chunk of recently announced $49M cancer research grant funding

show me the money

Houston’s Baylor College of Medicine is beefing up its team of cancer researchers.

The college just received $6 million from the state agency Cancer Prevention and Research Institute of Texas (CPRIT) to recruit three cancer researchers: Graham Erwin, Michael Robertson and Dr. Varun Venkataramani. Each researcher is getting $2 million.

In addition, the University of Texas MD Anderson Cancer Center snagged a $2 million CPRIT grant to recruit Simon Eschweiler.

In all, CPRIT recently announced $49 million in cancer research and prevention grants, including nearly $24 million for recruitment of cancer researchers.

Here’s a rundown of the recruitment grants awarded in Houston:

  • Graham Erwin. Erwin is a postdoctoral fellow at Stanford University’s Stanford Cancer Institute. He’s a biologist who specializes in DNA sequencing related to the development of cancer therapeutics and diagnostics.
  • Michael Robertson. Robertson also is a postdoctoral fellow at Stanford. He focuses on molecular and cellular physiology at Stanford’s medical school.
  • Dr. Varun Venkataramani. Venkataramani, a neuroscientist, is a brain tumor researcher at University Hospital Heidelberg, one of the largest hospitals in Germany.
  • Simon Eschweiler. Eschweiler is a research assistant professor at Southern California’s La Jolla Institute for Immunology. He specializes in immunotherapy for cancer patients.

Aside from the recruitment grants, three institutions in the Houston area received nearly $6 million in funding for cancer treatment and prevention programs. Here’s an overview of those grants:

  • Almost $2.5 million for expansion of a program at the University of Texas Medical Branch at Galveston that supplies HPV vaccinations for new mothers.
  • Nearly $2.5 million for an MD Anderson program that promotes physical activity for cancer survivors.
  • Almost $500,000 for an MD Anderson program to increase treatment of tobacco users who are participating in opioid treatment programs.
  • Nearly $500,000 for a University of Houston program designed to help LGBTQ+ Texans lead tobacco-free lives.

“From new research programs, recruitment of preeminent scientists to Texas, pilot studies, new technology, and expanding the reach of successful cancer prevention programs, [the] grants highlight the effect CPRIT is having on not just cancer research and prevention efforts, but on life science infrastructure in Texas,” Wayne Roberts, the organization’s CEO, said in a news release.

From 2016 to 2021, the Houston area saw the third largest jump in students earning degrees in biology and biomedicine. Photo via Getty Images

Houston maintains a leader in annual life science report

lucky number 13

Houston is a rising star when it comes to developing homegrown talent in life sciences research.

From 2016 to 2021, the Houston area saw the third largest jump in students earning degrees in biology and biomedicine among 25 major life sciences markets, according to a new report from commercial real estate services company CBRE.

Houston saw a 38 percent spike in the number of degrees granted during the five-year span, according to the report. Only Phoenix (91 percent) and Riverside-San Bernardino, California (47 percent) bested Houston in this category.

The report shows Houston produced the 20th largest number of graduates and certificate holders (1,832) in biological and biomedical sciences in 2021.

Overall, Houston appears at No. 13 in CBRE’s ranking of the top U.S. market for life sciences talent. That matches Houston’s ranking in last year’s report. Factors that go into the ranking include the number of life sciences graduates, concentration of high-ranking universities and institutions, and density of talent.

“We need a strong pool of graduates to continue expanding the life sciences industry in the U.S.,” Scott Carter, senior vice president of CBRE, says in a news release. “The world-class universities like University of Houston, The University of Texas Health Science Center at Houston, Rice University, and others offer best-in-class programs for graduates, making Houston a top market for life science research talent.”

In terms of the number of life sciences graduates produced in 2021, the University of Houston ranks first (719 grads) among local colleges and universities, followed by The University of Texas Health Science Center at Houston (244), Rice University (243), the University of Houston-Clear Lake (139), and Prairie View A&M University (103), according to the CBRE report.

If those grads remain in the Houston area, they’re likely to land lucrative jobs. The report outlines average wages in the region for four career categories in life sciences:

  • Biochemist — $118,018
  • Biophysicist — $117,736
  • Biomedical engineer — $108,113
  • Chemist — $97,887

In 2022, Houston employed 8,480 people in life sciences occupations, making it the country’s 12th largest pool of life sciences research talent, says CBRE.

“Demand for life sciences research workers is above pre-pandemic levels,” Matt Gardner, life sciences leader at CBRE Advisory Services, says in a news release. “We’re also seeing a closely balanced ratio of hiring to job cuts in the biopharma industry compared with the technology sector and the broader economy, which positions the life sciences to remain stable despite an economic downturn.”

A handful of Houston startups were selected for a national accelerator program. Photo via Getty Images

4 Houston startups selected for preeminent medtech accelerator

ready to grow

Four Houston startups have been selected for the 2023 cohort of the MedTech Innovator’s four-month accelerator program.

Los Angeles-based MedTech Innovator, which bills itself as the world’s largest medtech accelerator, will award $800,000 in funding to winners of its competitions throughout the 2023 program. The grand prize is $350,000.

Almost 1,200 startups applied to participate in this year’s accelerator. From that group, MedTech Innovator, its corporate partners, and more than 400 judges picked nearly 200 candidates for in-person pitching and partnering events. Sixty-one startups ultimately were chosen for the 2023 cohort, which kicks off June 14 and 15.

Forty-two of the 61 startups will participate in MedTech Innovator’s corporate mentorship program, and five companies will join a plastic surgery accelerator in conjunction with the American Society for Plastic Surgeons.

MedTech Innovator says more than 500 startups have completed its accelerator program and have secured $6.8 billion in follow-on funding.

“We are proud of our stellar track record of identifying and perfecting the most innovative medtech startups in the world,” Paul Grand, CEO and founder of MedTech Innovator, says in a news release.

The four Houston companies selected for the MedTech Accelerator’s 2023 cohort are:

  • Ankr. The startup (whose name is pronounced “anchor”) provides a caregiving platform for cancer patients in the U.S. As of 2022, there were an estimated 18.1 million cancer survivors across the country. The company won The Ion’s Houston Startup Showcase in 2021.
  • NeuraStasis. The startup is developing an electrical stimulation device to delay the effects of acute ischemic stroke. This type of stroke happens when blood flow to the brain decreases. Acute ischemic stroke affects about 700,000 people in the U.S. each year. The company was selected for last year’s cohort of the UCSF Rosenman Institute’s Rosenman Innovators program.
  • Nininger Medical. The startup is working on a device for minimally invasive replacement of the tricuspid valve. Today, an estimated 1.6 million Americans experience tricuspid regurgitation. This type of heart disease occurs when the tricuspid valve’s flaps don’t close correctly. In 2021, the company received a $256,000 National Science Foundation grant.
  • Prana Thoracic. The startup is developing a tool for minimally invasive removal of lung tissue in lung cancer patients. In March, the company announced $3 million in series A funding.

Last year, three Houston companies were selected for the program. The startups — Ad Vital, Corveus Medical, and CorInnova.

Over 1,000 companies applied to participate in the 2023 MedTech Innovator Accelerator, 200 pitched in person, and 61 startups were selected. Graphic via https://medtechinnovator.org/

San Diego-based rBIO moved to Houston to take advantage of the growing ecosystem of biomanufacturing and synthetic biology. Photo via Getty Images

California-founded biotech startup relocates to join Houston's emerging bioeconomy

new to hou

Cameron Owen had an idea for a synthetic biology application, and he pitched it to a handful of postdoctoral programs. When he received the feedback that he didn't have enough research experience, he decided to launch a startup based in San Diego around his idea. He figured that he'd either get the experience he needed to re-apply, or he'd create a viable company.

After three years of research and development, Owen's path seems to have taken him down the latter of those two options, and he moved his viable company, rBIO, to Houston — a twist he didn't see coming.

“Houston was not on my radar until about a year and a half ago,” Owen says, explaining that he thought of Houston as a leading health care hub, but the coasts still had an edge when it came to what he was doing. “San Diego and the Boston area are the two big biotech and life science hubs.”

But when he visited the Bayou City in December of 2021, he says he saw first hand that something new was happening.

“Companies from California like us and the coastal areas were converging here in Houston and creating this new type of bioeconomy,” he tells InnovationMap.

Owen moved to Houston last year, but rBIO still has an academic partner in Washington University in St. Louis and a clinical research organization it's working with too, so he admits rBIO's local footprint is relatively small — but not for long.

"When we look to want to get into manufacturing, we definitely want to build something here in Houston," he says. "We’re just not to that point as a company."

In terms of the stage rBIO is in now, Owen says the company is coming out of R&D and into clinical studies. He says rBIO has plans to fundraise and is meeting with potential partners that will help his company scale and build out a facility.

With the help of its CRO partner, rBIO has two ongoing clinical projects — with a third coming next month. Owen says right now rBIO is targeting the pharmaceutical industry’s biologics sector — these are drugs our bodies make naturally, like insulin. About 12 percent of the population in the United States has diabetes, which translates to almost 40 million people. The demand for insulin is high, and rBIO has a way to create it — and at 30 percent less cost.

This is just the tip of the iceberg — the world of synthetic biology application is endless.

“Now that we can design and manipulate biology in ways we’ve never been able to before,” Owen says, "we’re really only limited by our own imagination.”

Synthetic biology is a field of science that involves programing biology to create and redesign natural elements. While it sounds like science fiction, Owen compares it to any other type of technology.

“Biology really is a type of software,” he says. “Phones and computers at their core run on 1s and 0s. In biology, it’s kind of the same thing, but instead of two letters, it’s four — A, C, T, and G.”

“The cool thing about biology is the software builds the hardware,” he continues. “You put that code in there and the biology builds in and of itself.”

Owen says the industry of synthetic biology has been rising in popularity for years, but the technology has only recently caught up.

“We’re exploring a brave new world — there’s no doubt about that,” Owen says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University's edtech company receives $90M to lead NSF research hub

major collaboration

An educational technology company based out of Rice University has received $90 million to create and lead a research and development hub for inclusive learning and education research. It's the largest research award in the history of the university.

OpenStax received the grant funding from the U.S. National Science Foundation for a five-year project create the R&D hub called SafeInsights, which "will enable extensive, long-term research on the predictors of effective learning while protecting student privacy," reads a news release from Rice. It's the NSF's largest single investment commitment to national sale education R&D infrastructure.

“We are thrilled to announce an investment of $90 million in SafeInsights, marking a significant step forward in our commitment to advancing scientific research in STEM education,” NSF Director Sethuraman Panchanathan says in the release. “There is an urgent need for research-informed strategies capable of transforming educational systems, empowering our nation’s workforce and propelling discoveries in the science of learning.

"By investing in cutting-edge infrastructure and fostering collaboration among researchers and educators, we are paving the way for transformative discoveries and equitable opportunities for learners across the nation.”

SafeInsights is funded through NSF’s Mid-scale Research Infrastructure-2 (Mid-scale RI-2) program and will act as a central hub for 80 partners and collaborating institutions.

“SafeInsights represents a pivotal moment for Rice University and a testament to our nation’s commitment to educational research,” Rice President Reginald DesRoches adds. “It will accelerate student learning through studies that result in more innovative, evidence-based tools and practices.”

Richard Baraniuk, who founded OpenStax and is a Rice professor, will lead SafeInsights. He says he hopes the initiative will allow progress to be made for students learning in various contexts.

“Learning is complex," Baraniuk says in the release. "Research can tackle this complexity and help get the right tools into the hands of educators and students, but to do so, we need reliable information on how students learn. Just as progress in health care research sparked stunning advances in personalized medicine, we need similar precision in education to support all students, particularly those from underrepresented and low-income backgrounds.”

OpenStax awarded $90M to lead NSF research hub for transformational learning and education researchwww.youtube.com

2 Houston startups selected by US military for geothermal projects

hot new recruits

Two clean energy companies in Houston have been recruited for geothermal projects at U.S. military installations.

Fervo Energy is exploring the potential for a geothermal energy system at Naval Air Station Fallon in Nevada.

Meanwhile, Sage Geosystems is working on an exploratory geothermal project for the Army’s Fort Bliss post in Texas. The Bliss project is the third U.S. Department of Defense geothermal initiative in the Lone Star State.

“Energy resilience for the U.S. military is essential in an increasingly digital and electric world, and we are pleased to help the U.S. Army and [the Defense Innovation Unit] to support energy resilience at Fort Bliss,” Cindy Taff, CEO of Sage, says in a news release.

A spokeswoman for Fervo declined to comment.

Andy Sabin, director of the Navy’s Geothermal Program Office, says in a military news release that previous geothermal exploration efforts indicate the Fallon facility “is ideally suited for enhanced geothermal systems to be deployed onsite.”

As for the Fort Bliss project, Michael Jones, a project director in the Army Office of Energy Initiatives, says it’ll combine geothermal technology with innovations from the oil and gas sector.

“This initiative adds to the momentum of Texas as a leader in the ‘geothermal anywhere’ revolution, leveraging the robust oil and gas industry profile in the state,” says Ken Wisian, associate director of the Environmental Division at the U.S. Bureau of Economic Geology.

The Department of Defense kicked off its geothermal initiative in September 2023. Specifically, the Army, Navy, and Defense Innovation Unit launched four exploratory geothermal projects at three U.S. military installations.

One of the three installations is the Air Force’s Joint Base San Antonio. Canada-based geothermal company Eavor is leading the San Antonio project.

Another geothermal company, Atlanta-based Teverra, was tapped for an exploratory geothermal project at the Army’s Fort Wainwright in Alaska. Teverra maintains an office in Houston.

------

This article originally ran on EnergyCapital.