TMC's bootcamp companies have been announced. The 12 startups get to interact with Houston's health tech ecosystem and potentially join TMCi for its next accelerator cohort. Photo via TMC

The Texas Medical Center's Innovation Factory has brought in 12 life science startups to immerse them in the Houston innovation ecosystem, learn more about their businesses, and select its next cohort for its semiannual accelerator.

Twice a year, the TMC Innovation Factory hosts its HealthTech Accelerator Bootcamp. It a time to see if both sides of the table — TMC and the startups — are a fit for further acceleration. The 12 startups hail from three continents, represent a wide spectrum of specialties, and were widdle down from over 100 applicants.

“These startups are tackling significant challenges facing our health care ecosystem not only locally, but also globally. We are delighted to bring together solutions in the areas of maternal health, enabling care at home, nursing support and education, oncology and neurology, to name a few,” says Devin Dunn, head of the HealthTech Accelerator, in a news release.

Newly appointed entrepreneur in residence, Zaffer Syed, will help in supporting and guiding the cohort. Zaffer has experience as a medtech entrepreneur and has brought health care innovations to market.

“Participation in the Accelerator can certainly fast-track growth for early stage startups,” says Syed in the release. “I am eager to work with the caliber of companies entering bootcamp and to watch what they will achieve with the dedicated support of the TMCi team.”

The 12 companies that were invited to TMCi's bootcamp are as follows, according to TMC.

  • Avia Vascular, from Salt Lake City, Utah, creates Ally, a needle-free blood collection device intended to reduce the need for venipuncture when obtaining blood samples in patients with an established peripheral IV catheter.
  • Queenstown, Singapore-based Biorithm aims to reverse the poor maternal outcomes curve with its remote monitoring system to bring data-driven, accessible, and personalized care to every mother and baby.
  • CranioSense, founded in Bedford, Massachusetts, unlocks the hidden parameters of brain health across the neurological care spectrum with its development of a non-invasive way of assessing and monitoring intracranial pressure.
  • Milwaukee-based Debtle focuses on the patient portion of billing and uses its centralized communications and payment hub to save Revenue Cycle time, improve patient retention, and enable clients to easily resolve their overdue balances.
  • EmpNia Inc., from Minneapolis, enables precision imaging and radiation therapy for all cancer patients by providing an accurate, universal, easy-to-use, and cost-effective respiratory motion management solution.
  • Austin-based Highnote is a generative AI-powered mentor in the nurse’s pocket that build skills and confidence through just-in-time bits of information to make nurses feel supported and better equipped, to provide better patient care, and to improve retention rates.
  • LeQuest, from Rotterdam, Netherlands, aids health care professionals’ skills and knowledge advancement through online stimulation training with its comprehensive remote education solution, resulting in reduced cost of education, increased utilization and better patient outcomes.
  • Lucid Lane, founded in Los Altos, California, provides data-driven digital health solutions to empower both chronic and surgery pain patients, to prevent dependence on prescribed addictive medications and reduces persistent opioid use.
  • RizLab Health Inc., a Princeton, New Jersey company, brings blood cell analysis to patients’ fingertips with its Cytotracker portable device that measures white blood cell counts with a drop of blood to minimize infections from venipuncture in cancer patients.
  • Rose Health, based in Centennial, Colorado, connects occupational therapists and home remodeling service companies to households in need of accessible home modifications to enable homes to age with dignity.
  • Los Angeles-based Spark Neuro offers objective and accessible AI technology for the diagnosis and monitoring of brain health conditions.
  • Vitala, from Stockholm, Sweden, is a digital platform, enables health care providers to prescribe, monitor, and manage diagnoses-specific medical exercises for patients with chronic health conditions.

After the bootcamp, TMCi will decide which of the companies will move on to the six-month accelerator that's slated to start later this year. TMCi recently announced a new accelerator with Denmark, previously announced its spring cohorts.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”