Lean methodology aims to help startups reduce risk and helps entrepreneurs make better, more efficient decisions. Miguel Tovar/University of Houston

There are few things riskier than launching a new business. You could run through a mine field and have a better chance at living than launching a successful, long-lasting business. In fact, the Harvard Business School even reported that three out of every four startups fail. Fortunately, a new process has come to light that was designed precisely to reduce the risk of starting a business. Lean startups champion trial and error over detailed planning. Customer feedback over "gut feeling." Cyclic processes of design over traditional development.

Some lean startup ideas have already gone mainstream because they've proven to be so effective. The principles of "minimum viable product" and "startup pivot" have become so engrained in modern business that even university business colleges have begun to teach them.

There are three key aspects of the lean methodology.

Educated guesses

Number one: Instead of spending a year conducting research and planning long-term, lean startup entrepreneurs go with the idea that all they have on the first day is a bunch of unproven ideas. Guesses, really. These entrepreneurs forego the traditional business plan and opt instead to give a Cliff Notes version of their big idea using a template dubbed "business model canvas." It's pretty much a diagram that shows how a business generates value not just for its consumers, but for itself.

Field work

Number two: Lean startups use an "out and about" method for testing their ideas. It's a kind of customer development. They go "out and about" and basically interview potential customers, interested people, and people on the fence about all aspects of their business. How's our pricing compared to others you've seen? Do you like our product features? What do you think of our strategy? Lean startup entrepreneurs amend their ideas based on the feedback they get from customers. That's the beauty of the lean method: it's based on your willingness to change directions based on new information. Sound familiar? Well, it should. I just described pivoting. A lean startup concept now adopted by major corporations.

Agility means stability not fragility

Number three: The software industry bore a method called agile development. Agile development cuts down on wasted time because it emphasizes the ability and willingness to change directions and adapt fast. That's what agile means. To move quickly. There's a company named RoofProtect Pro that created a chemical they thought would appeal to homeowners looking to reduce shingle rot. Turns out there wasn't really a demand for reducing shingle rot. It wasn't as big a deal as the RoofProtect Pro founders had hypothesized. However, after speaking with business owners they discovered there was a demand for something to help reduce rust and deterioration of signage. RoofProtect Pro went back to the drawing board to build and test a prototype for a chemical that reduces rust and staining on different material like concrete and metal. A year later RoofProtect Pro became SurfaceSustain and obtained over $2 million in venture capital funding.

Now that's agility!

It's no surprise, then, that in the high-stakes world of business, a methodology designed specifically to reduce risk would prove successful. Lean methods don't guarantee success, of course, but the principles it holds dear do help strip away a lot of wasted time and energy and have proven to be highly efficient. Now, if there's an antidote to riskiness, it's got to be efficiency. Efficiency tightens a business to bare bones so there is little room for big risks to hurt your venture.

------

This article originally appeared on the University of Houston's The Big Idea.

Rene Cantu is the writer and editor at UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

Houston physicist scores $15.5M grant for high-energy nuclear physics research

FUTURE OF PHYSICS

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.