Within the next five years, Frankel believes that the technology they are using will evolve even more, perhaps to include holographic 3D models of homes they hope to build for their clients. Getty Images

For Frankel Building Group, the evolution of technology in the real estate and construction world was the next logical step in creating a sustainable and viable company. By incorporating technology into its client-based custom design and build firm through the use of a personal app and 3D renderings, co-president and principal Scott Frankel said Frankel Building Group is years ahead of the rest of the competition.

Frankel, who runs the company alongside his brother Kevin, described it as "a responsibility to do better and to show more."

"Our company, when I got here, was politely a little bit in the stone ages," Scott Frankel tells InnovationMap. "In order to be a customer facing business, and in order to compete in the market, we have learned to be a very technology-forward business. I would say out of every custom builder in the country, we are probably the most technology-reliant builder out there. That's a good thing."

The building group, which was started by 30 years ago by Scott and Kevin's father Jim, uses technology in every aspect of its projects.

Five to 10 years ago, builders would have to import designs into AutoCAD, a software that allows builders, engineers and architects to see their drawings in 3D form. Those AutoCAD drawings would then be printed and given to the homebuyer.

At Frankel Building Group, clients are able to login to an online portal that allows them to see every communication between them and the Frankel team, as well as building plans, updates, and digital 3D renderings of their homes. Everything from estimates to the latest updates from their assigned project manager are available to homebuyers from their phone.

"Our clients want that access," Frankel said. "If they don't get that access, they are going to be left with more questions than answers."

Frankel believes that they are only doing what the clients expect from a custom homebuilder: increasing communication through every means possible to make sure the client is satisfied with what the builder is doing.

"My brother and I are not huge technology guys," Frankel said. "We didn't come from this as framers who became custom builders. We came from a family that built custom homes and (using technology) only makes logical sense because it's something that makes it better. It's kind of like when you're banking with Chase and they came out with online banking — it just makes it better."

Within the next five years, Frankel believes that the technology they are using will evolve even more, perhaps to include holographic 3D models of homes they hope to build for their clients.

But, for now, Frankel Building Group is focused on growing their business one day at a time.

"Our focus is people in Houston who want to design and build that home for them on their property," Frankel said. "We just want to make sure we're putting the best product out there."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC lands $3M grant to launch cancer device accelerator

cancer funding

A new business accelerator at Houston’s Texas Medical Center has received a nearly $3 million grant from the Cancer Prevention and Research Institute of Texas.

The CPRIT grant, awarded to the Texas Medical Center Foundation, will help launch the Accelerator for Cancer Medical Devices. The accelerator will support emerging innovators in developing prototypes for cancer-related medical devices and advancing them from prototype to clinical trials.

“The translation of new cancer-focused precision medical devices, often the width of a human hair, creates the opportunity to develop novel treatments for cancer patients,” the accelerator posted on the CPRIT website.

Scientist, consultant, and entrepreneur Jason Sakamoto, associate director of the TMC Center for Device Innovation, will oversee the accelerator. TMC officials say the accelerator builds on the success of TMC Innovation’s Accelerator for Cancer Therapeutics.

Each participant in the Accelerator for Cancer Medical Devices program will graduate with a device prototype, a business plan, and a “solid foundation” in preclinical and clinical strategies, TMC says. Participants will benefit from “robust support” provided by the TMC ecosystem, according to the medical center, and “will foster innovation into impactful and life-changing cancer patient solutions in Texas and beyond.”

In all, CPRIT recently awarded $27 million in grants for cancer research. That includes $18 million to attract top cancer researchers to Texas. Houston institutions received $4 million for recruitment:

  • $2 million to the University of Texas MD Anderson Cancer Center to recruit Rodrigo Romero from Memorial Sloan Kettering Cancer Center in New York City
  • $2 million to MD Anderson to recruit Eric Gardner from Weill Cornell Medicine in New York City

A $1 million grant also went to Baylor College of Medicine researcher Dr. Akiva Diamond. He is an assistant professor at the medical college and is affiliated with Baylor’s Dan L. Duncan Comprehensive Cancer Center.

Houston students develop cost-effective glove to treat Parkinson's symptoms

smart glove

Two Rice undergraduate engineering students have developed a non-invasive vibrotactile glove that aims to alleviate the symptoms of Parkinson’s disease through therapeutic vibrations.

Emmie Casey and Tomi Kuye developed the project with support from the Oshman Engineering Design Kitchen (OEDK) and guidance from its director, Maria Oden, and Rice lecturer Heather Bisesti, according to a news release from the university.

The team based the design on research from the Peter Tass Lab at Stanford University, which explored how randomized vibratory stimuli delivered to the fingertips could help rewire misfiring neurons in the brain—a key component of Parkinson’s disease.

Clinical trials from Stanford showed that coordinated reset stimulation from the vibrations helped patients regain motor control and reduced abnormal brain activity. The effects lasted even after users removed the vibrotactile gloves.

Casey and Kuye set out to replicate the breakthrough at a lower cost. Their prototype replaced the expensive motors used in previous designs with motors found in smartphones that create similar tiny vibrations. They then embedded the motors into each fingertip of a wireless glove.

“We wanted to take this breakthrough and make it accessible to people who would never be able to afford an expensive medical device,” Casey said in the release. “We set out to design a glove that delivers the same therapeutic vibrations but at a fraction of the cost.”

Rice’s design also targets the root of the neurological disruption and attempts to retrain the brain. An early prototype was given to a family friend who had an early onset of the disease. According to anecdotal data from Rice, after six months of regularly using the gloves, the user was able to walk unaided.

“We’re not claiming it’s a cure,” Kuye said in the release. “But if it can give people just a little more control, a little more freedom, that’s life-changing.”

Casey and Kuye are working to develop a commercial version of the glove priced at $250. They are taking preorders and hope to release 500 pairs of gloves this fall. They've also published an open-source instruction manual online for others who want to try to build their own glove at home. They have also formed a nonprofit and plan to use a sliding scale price model to help users manage the cost.

“This project exemplifies what we strive for at the OEDK — empowering students to translate cutting-edge research into real-world solutions,” Oden added in the release. “Emmie and Tomi have shown extraordinary initiative and empathy in developing a device that could bring meaningful relief to people living with Parkinson’s, no matter their resources.”