From a new cancer-detecting device to a digital resource for childhood cancer survivors, here are some cancer-fighting innovations from Houston. Getty Images

Not all heroes wear capes. Some wear lab coats. Almost daily, it seems there's a new breakthrough or discovery for life-saving innovations.

These three cancer-related innovations are coming out of Houston, and they are ones to watch.

University of Houston's biosensor for prostate cancer reoccurrence

Dmitri Litvinov, professor of electrical and computer engineering at the University of Houston, is on a mission to bring an effective, low-cost test for prostate cancer recurrence to doctor's offices everywhere. Photo via uh.edu

Researchers from the University of Houston have teamed up with their colleagues at the University of Pennsylvania to try to get a biosensor that can detect the recurrence of prostate cancer into the doctor's office.

The research is funded by a $399,988 grant from the National Science Foundation and led by Dmitri Litvinov, principal investigator and professor of electrical and computer engineering at UH.

"Such tests exist in clinical laboratories, but there remains a critical need for inexpensive, versatile and high-sensitivity diagnostic platforms which can bring the performance to the point of care or doctor's office," says Litvinov in a release.

The biosensor platform would be less than $3 per test — an alluring fact for patients and health care providers — and would function more or less like a pregnancy test, but without a simple positive or negative response. Rather, the test can assess how much prostate-specific antigen is in a patient's blood

"Our technology has potential to help improve survival rates with more accessible, affordable and easier testing," Litvinov says.

Rice University's study that points to new cancer-fighting drug

José Onuchic co-authored a study that's opening doors for a new approach in cancer drug development. Photo by Jeff Fitlow/Rice University

A recent study in the Proceedings of the National Academy of Sciences revealed that a cancer-linked version of the protein mitoNEET can shut the gateways of mitochondria cells that supply chemical energy.

José Onuchic, a physicist and co-director of Rice University's Center for Theoretical Biological Physics, co-authored the paper and noted that the gateways, called voltage-dependent anion channels, or VDACs, typically open and shut to allow the passage of metabolites and other small molecules between mitochondria and the rest of the cell.

"The VDAC channel transports all types of metabolites between the cytosol and the mitochondria," says Onuchic in a release. "Dysfunction of this channel is involved in many diseases including cancer and fatty liver disease."

Co-author Patricia Jennings, a structural biologist at UCSD, explains in the news release.

"The discovery that mitoNEET directly gates VDAC, the major porin of mitochondria, as well as the accompanying structural analysis and predictions for this interaction, affords a new platform for investigations of methods to induce cancer cells to commit cell suicide, or apoptosis/ferroptosis, in a cancer-specific, regulated process," she writes.

The study opens doors for a new approach to cancer-treating drugs.

"Fine-tuning a drug that specifically alters the redox-state of interaction between VDAC and mitoNEET would allow the development of new weapons to battle multiple cancers," Onuchic says.

Baylor College of Medicine's digital tool for childhood cancer survivors

Baylor College of Medicine has created an online resource for childhood cancer survivors. Photo via bcm.edu

Childhood cancer survivors face a lifetime of obstacles to overcome, and Baylor College of Medicine and Texas Children's Cancer Center have developed a resource to help these patients have the best quality of life in remission.

Passport for Care, a free online resource, features a "survivorship care plan" for the patient, his or her doctor, and family members. The program's new Screenings Recommendations Generator tool can provide a childhood cancer survivor with potential late effects and how to manage their care.

"This tool is especially helpful for patients who have moved on to other doctors who they did not see as a child and who might not be familiar with their particular treatment and the subsequent health risks," says Dr. David Poplack, founder of the Passport for Care and associate director of the Texas Children's Cancer and Hematology Centers, in a news release. "It helps physicians understand their patient's history and know how to address future health problems."

Over 37,000 cancer survivors are using Passport for Care at 138 clinics around the world. Additionally, patients can also register through the Screenings Recommendations Generator.

Passport for Care is funded by the Cancer Prevention & Research Institute of Texas, as well as through a grant from Hyundai Hope on Wheels.

"We created Passport for Care with the goal of empowering survivors in their healthcare decisions," Poplack says. "Their care doesn't end when cancer treatment is over. Survivorship care is a lifelong journey."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics co. unveils new robot that can handle extreme temperatures

Hot New Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot is commercially available and certified to operate at extreme temperatures.

The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F.

The new robot has received the NEC/CEC Class I Division 2 (C1D2) certification from FM Approvals, allowing it to operate safely in hazardous locations and to perform on-stream inspections of aboveground storage tanks containing products stored at elevated temperatures.

“Our engineering team developed the SR-3HT in response to significant client demand in both the U.S. and international markets. We frequently encounter higher temperatures due to both elevated process temperatures and high ambient temperatures, especially in the hotter regions of the world, such as the Middle East," David Lamont, CEO of Square Robot, said in a news release. "The SR-3HT employs both active and passive cooling technology, greatly expanding our operating envelope. A great job done (again) by our engineers delivering world-leading technology in record time.”

The company's SR-3 submersible robot and Side Launcher received certifications earlier this year. They became commercially available in 2023, after completing initial milestone testing in partnership with ExxonMobil, according to Square Robot.

The company closed a $13 million series B round in December, which it said it would put toward international expansion in Europe and the Middle East.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

---

This article originally appeared on EnergyCapitalHTX.com.

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.