From Houston inventors being recognized to Chevron's latest investment, here's what innovation news you need to know. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Houston's innovation news hasn't quite slowed yet for the holidays. This most recent news roundup includes lots of money raised, a new contract for a Houston startup, innovators recognized and more.

For more daily innovation news, subscribe to InnovationMap's newsletter, which goes out every weekday at 7 am.

Chevron Technology Ventures invests in Texas company

Courtesy of CTV

Houston-based Chevron Technology Ventures has contributed to Austin-based motor tech company Infinitum Electric's $12.5 million Series B round of financing. New Mexico-based Cottonwood Technology Fund and includes participation AJAX Strategies and other individual investors.

The company plans to use the funds to build out its research and development, engineering, supply chain, and production teams.

"Infinitum's mission aligns well with our goals for the Future Energy Fund," says Barbara Burger, president of CTV, in a release. "The purpose of the Future Energy Fund is to invest in breakthrough energy technologies that reflect Chevron's commitment to lower emission energy sources and that are integral to low-carbon and efficient value chains."

4 Houston researchers named fellows of the National Academy of Inventors

ideas

Getty Images

The National Academy of Inventors named 168 academic innovators to NAI Fellow status — and four conduct their research right here in Houston. The program "highlights academic inventors who have demonstrated a spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on quality of life, economic development and the welfare of society," reads the news release.

The four Houston inventors and their institutions are as follows:

List ranks Houston's fastest growing companies

Chart via Grojo.com

Growjo named the 100 fastest-growing companies in Houston for 2019, and, while the study notes the city's large oil and gas and medical industries, also acknowledges its growing tech and software scene. The companies were selected by a myriad of factors.

"Our algorithm is based on multiple datasets including employee growth, estimated revenue growth, valuations, quality and quantity of funding, hiring announcements, current job openings, leadership team announcements, and numerous other growth triggers," reads the website.

The top five companies on the list are:

  1. Midcoast Energy, which has 183 employees and a 17 percent employee growth rate.
  2. ibüümerang, which has 528 employees, and a 633 percent employee growth rate.
  3. Arion, which has 136 employees and a 216 percent employee growth rate.
  4. GoExpedi, which as 59 employees and a 119 percent employee growth rate.
  5. Code Ninjas, which has 338 employees and a 63 percent employee growth rate.

For the full list, visit Growjo.com.

TMCx company wins awards 

Image via abilitechmedical.com

Abilitech Medical, which recently completed the TMCx program, has taken home some wins in Minnesota, where it's based. The company was named named among the state's topmed tech companies by the Minnesota High Tech Association at the 2019 TEKNE awards and 2019, as well as the grand prize winner and top woman-led business by the University of Minnesota's business school at its 2019 Minnesota Cup competition.

The medical device company's technology includes the Abilitech™ Assist, which assists patients with Multiple Sclerosis, rehabilitating from stoke, or other conditions with eating, drinking, and using a computer.

"We've met so many people whose lives will be changed with this innovation," says CEO and founder Angie Conley in a news release. "Through the Texas Medical Center accelerator, we met Dr. Hany Samir who championed our upcoming stroke study."

Samir is a cardiac anesthesiologist at Houston Methodist. He lost his ability to work and perform simple daily functions after a stroke debilitated his left arm.

"I'm unable to practice the medicine I love. I want to hold my wife again with two hands and enjoy dinner with her, without having her cut my food. I want to have a cup of coffee without asking for help," says Samir in the release. "Regaining function in my arm will restore my life."

Pandata Tech receives Department of Defense contract

Photo courtesy of Pandata Tech

Houston-based ​Pandata Tech secured a contract with the United States Department of Defense from the Rapid Sustainment Office of the the United States Air Force last month. The Phase II contract will allow the company to work with Joint Base Elmendorf-Richardson in Alaska to develop a scalable data quality platform.

The access to data will aid in natural disasters, per the release. The goal of the contract would be for a Phase III contract and an opportunity to scale the technology into other branches of military. The company also had a Phase I contract signed in August before securing the Phase II in November.

"Pandata Tech's proprietary DQM software was built during a development partnership with one of the world's largest offshore drilling companies. Because the technology was tested and built with offshore drilling data, the shift to aircraft carriers would be smooth," explains Gustavo Sanchez, co-founder of Pandata Tech, in a news release.

Houston company receives Department of Energy funding

Photo via aerominepower.com

The U.S. Department of Energy's National Renewable Energy Laboratory — with funding from the DOE's Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office — selected a Houston company for its Competitiveness Improvement Project.

Westergaard Solutions, founded by Houstonian Carsten Westergaard, was named among the 2019 CIP Awardees. Among the company's assets is AeroMine, which competed in the most recent Houston cohort in MassChallenge Texas. The company "will implement an innovative building-integrated wind generation concept with no external moving parts, moving from a preliminary conceptual design to a pre-production prototype design that is ready for testing," according to the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”