Three UH researchers are revolutionizing the way we think the brain works. Andriy Onufriyenko/Getty Images

While a lot of scientists and researchers have long been scratching their heads over complicated brain functionality challenges, these three University of Houston researchers have made crucial discoveries in their research.

From dissecting the immediate moment a memory is made or incorporating technology to solve mobility problems or concussion research, here are the three brain innovations and findings these UH professors have developed.

Brains on the move

Professor of biomedical engineering Joe Francis is reporting work that represents a significant step forward for prosthetics that perform more naturally. Photo courtesy of UH Research

Brain prosthetics have come a long way in the past few years, but a UH professor and his team have discovered a key feature of a brain-computer interface that allows for an advancement in the technology.

Joe Francis,a UH professor of biomedical engineering, reported in eNeuro that the BCI device is able to learn on its own when its user is expecting a reward through translating interactions "between single-neuron activities and the information flowing to these neurons, called the local field potential," according to a UH news release. This is all happening without the machine being specifically programmed for this capability.

"This will help prosthetics work the way the user wants them to," says Francis in the release. "The BCI quickly interprets what you're going to do and what you expect as far as whether the outcome will be good or bad."

Using implanted electrodes, Francis tracked the effects of reward on the brain's motor cortex activity.

"We assume intention is in there, and we decode that information by an algorithm and have it control either a computer cursor, for example, or a robotic arm," says Francis in the release.

A BCI device would be used for patients with various brain conditions that, as a result of their circumstances, don't have full motor functionality.

"This is important because we are going to have to extract this information and brain activity out of people who cannot actually move, so this is our way of showing we can still get the information even if there is no movement," says Francis.

Demystifying the memory making moments

Margaret Cheung, a UH professor, is looking into what happens when a memory is formed in the brain. Photo courtesy of UH Research

What happens when a brain forms a new memory? Margaret Cheung, a UH professor in the school of physics, computer science, and chemistry, is trying to find out.

Cheung is analyzing the exact moment a neuron forms a memory in our brains and says this research will open doors to enhancing memory making in the future.

"The 2000 Nobel laureate Eric Kandel said that human consciousness will eventually be explained in terms of molecular signaling pathways. I want to see how far we can go to understand the signals," says Cheung in a release.

Cheung is looking at calcium in particular, since this element impacts most of cellular life.

"How the information is transmitted from the calcium to the calmodulin and how CaM uses that information to activate decisions is what we are exploring," says Cheung in the release. "This interaction explains the mechanism of human cognition."

Her work is being funded by a $1.1 million grant from the National Institute of General Medical Science from the National Institutes of Health, and she's venturing into uncharted territories with her calcium signaling studies. Previous research hasn't been precise or conclusive enough for real-world application.

"In this work we seek to understand the dynamics between calcium signaling and the resulting encoded CaM states using a multiphysics approach," says Cheung. "Our expected outcome will advance modeling of the space-time distribution of general secondary messengers and increase the predictive power of biophysical simulations."

New tech for brain damage treatment

Badri Roysam, chair of the University of Houston Department of Electrical and Computer Engineering, is leading the project that uncovering new details surrounding concussions. Photo courtesy of UH Research

Concussions and brain damage have both had their fair shares of question marks, but this UH faculty member is tapping into new technologies to lift the curtain a little.

Badri Roysam, the chair of the University of Houston Department of Electrical and Computer Engineering, is heading up a multimillion-dollar project that includes "super microscopes" and the UH supercomputer at the Hewlett Packard Enterprise Data Science Institute. Roysam calls the $3.19 million project a marriage between these two devices.

"By allowing us to see the effects of the injury, treatments and the body's own healing processes at once, the combination offers unprecedented potential to accelerate investigation and development of next-generation treatments for brain pathologies," says Roysam in a release.

The project, which is funded by the National Institute of Neurological Disorders and Stroke (NINDS), is lead by Roysam and co-principal investigator John Redell, assistant professor at UTHealth McGovern Medical School. The team also includes NINDS scientist Dragan Maric and UH professors Hien Van Nguyen and Saurabh Prasad.

Concussions, which affect millions of people, have long been mysterious to scientists due to technological limitations that hinder treatment options and opportunities.

"We can now go in with eyes wide open whereas before we had only a very incomplete view with insufficient detail," says Roysam in the release. "The combinations of proteins we can now see are very informative. For each cell, they tell us what kind of brain cell it is, and what is going on with that cell."

The technology and research can be extended to other brain conditions, such as strokes, brain cancer, and more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Luxury transportation startup connects Houston with Austin and San Antonio

On The Road Again

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare.

Bookings are now available Monday through Saturday with departure times in the morning and evening. One-way fares range from $47-$87, putting Shutto in a similar lane to Dallas-based Vonlane, which also offers routes from Houston to Austin and San Antonio.

Shutto enters the market at a time when highway congestion is a hotter topic than ever. With high-speed rail still years in the future, its model aims to provide fast, predictable service at commuter prices.

The startup touts an on-time departure guarantee and a relaxed, intimate ride. Only 12 passengers fit inside each Mercedes Sprinter van, equipped with Wi-Fi and leather seating. And each route includes a pit stop at roadside favorite Buc-ee's.

In announcing the launch, founder and CEO Alberto Salcedo called the company a new category in Texas mobility.

“We are bringing true disruptive mobility to Texas: faster and more convenient than flying (no security lines, no delays), more comfortable and exclusive than the bus or train, and up to 70 percent cheaper than private transfers or Uber Black,” Salcedo said in a release.

“Whether you’re commuting for business, visiting family, exploring Texas wineries, or doing a taco tour in San Antonio, Shutto makes traveling between these cities as easy and affordable as riding inside the city."

Beyond the scheduled routes, Shutto offers private, customizable trips anywhere in the country, a service it expects will appeal to corporate retreat planners, party planners, and tourists alike.

In Houston, the service picks up and drops off near the Galleria at the Foam Coffee & Kitchen parking lot, 5819 Richmond Ave.. In San Antonio, it is located at La Panadería Bakery’s parking lot at 8305 Broadway. In Austin, the location is the Pershing East Café parking lot at 2501 E. Fifth St.

---

This article originally appeared on CultureMap.com.

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”

Aegis Aerospace appoints Houston space leader as new president

moving up

Houston-based Aegis Aerospace's current chief strategy officer, Matt Ondler, will take on the additional role of president on Jan. 1. Ondler will succeed Bill Hollister, who is retiring.

“Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers,” Stephanie Murphy, CEO of Aegis Aerospace, said in a news release.

Hollister guided Aegis Aerospace through expansion and innovation in his three years as president, and will continue to serve in the role of chief technology officer (CTO) for six months and focus on the company's technical and intellectual property frameworks.

"Bill has played an instrumental role in shaping the success and growth of our company, and his contributions leave an indelible mark on both our culture and our achievements," Murphy said in a news release.

Ondler has a background in space hardware development and strategic leadership in government and commercial sectors. Ondler founded subsea robots and software company Houston Mechatronics, Inc., now known as Nauticus Robotics, and also served as president, CTO and CSO during a five-year tenure at Axiom Space. He held various roles in his 25 years at NASA and was also named to the Texas Aerospace Research and Space Economy Consortium Executive Committee last year.

"I am confident that with Matt at the helm as president and Bill supporting us as CTO, we will continue to build on our strong foundation and further elevate our impact in the space industry," Murphy said in a news release. "Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers."