Today starts classes in San Jacinto College's new center. Photo via sanjac.edu

San Jacinto College is gearing up to open the Center for Petrochemical, Energy, and Technology at its main campus in Pasadena — a $60 million project designed to bolster the Houston area's petrochemical workforce.

On August 21, the community college hosted media tours of the Center for Petrochemical, Energy, and Technology (CPET). The center will welcome more than 2,800 students August 26 and host a grand opening September 18. The college broke ground on the 151,000-square-foot center in September 2017.

At CPET, future and current petrochemical workers will learn about process operations, troubleshooting, nondestructive testing, instrumentation, and myriad other aspects of the industry. In all, CPET will offer 75 courses. The center's highlights include an 8,000-square-foot glycol distillation unit, 35 labs, and 19 classrooms. San Jacinto College bills the center as the largest petrochemical training site in the Gulf Coast region.

"Four years ago, a team came together from San Jacinto College and the East Harris County Manufacturers Association to put together a long-term plan for workforce development," says Jim Griffin, associate vice chancellor at San Jacinto College and senior vice president of petrochemical, energy, and technology. "The Center for Petrochemical, Energy, and Technology was part of that plan and is now a reality."

Griffin says the curriculum, classrooms, and labs were "designed and influenced" by the petrochemical industry.

Among CPET's more than 20 partners are:

  • Emerson, which donated more than $1.3 million worth of services and equipment.
  • INEOS Olefins & Polymers USA, which contributed $250,000 in cash.
  • Dow Chemical, which donated $250,000 in cash.

All three of those employers — and many others in the region — depend on schools like San Jacinto College to contribute to the pool of highly trained workers in the petrochemical sector.

"We expect to see a higher-than-normal level of retirements over the next five plus years; rebuilding our workforce is critical at this time," Jeff Garry, Dow Chemical's operations director in the Houston area, said when his company's CPET donation was announced. "The need to train and adequately staff our assets will continue to be a pressing concern. As the labor market becomes more competitive for talent, we understand the importance to attract and retain highly skilled and educated workers."

With four campuses in Harris County, San Jacinto College promotes itself as a training hub for the country's largest petrochemical manufacturing complex, featuring 130 plants and employing about 100,000 people. CPET will serve as the centerpiece of that hub. Overall, the community college says it "plays a vital role in helping the region maintain its status as the 'Energy Capital of the World.'"

PetrochemWorks.com — a petrochemical career initiative whose backers include JPMorgan Chase & Co., the Council for Adult and Experiential Learning, and the East Harris County Manufacturing Association — says the local petrochemical industry will need 19,000 more skilled workers annually over the next three to five years.

"Chronic shortages of skilled labor are increasing costs and schedules and resulting in declining productivity, lower quality, more accidents, and missed objectives," according to Petrochemical Update, a news website.

Although robots are on the rise in many industries, Mark Mills, a senior fellow at the Manhattan Institute who's an energy and technology expert, believes that as petrochemical companies increasingly turn to automation, productivity will go up, ultimately creating more jobs — not fewer.

"In large part," Mills writes, "it's desperation, not an infatuation with tech or cost savings, that drives employers to deploy technologies that amplify the capabilities of the employees they have and can find. It is a common misconception to think that automation is always cheaper than using labor."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”