The five scientists represent five different academic institutions in Houston. Photo via Getty Images

The National Academy of Inventors has recognized 175 scientists from across the world as NAI Fellows — and five of those inventors are based at Houston institutions.

The program honors academic inventors who, according to NAI, "have demonstrated a spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on quality of life, economic development and the welfare of society."

The five Houston inventors join the ranks of a group of individuals who have generated over 13,000 licensed technologies and companies, and created more than 19 million jobs, according to the announcement.

These are the scientists from Houston organizations:

  • Ananth Annapragada of Baylor College of Medicineis professor of radiology and obstetrics and gynecology, vice chief of research and director of basic research at Baylor College of Medicine and Texas Children's Hospital as well as a member of the Dan L Duncan Comprehensive Cancer Center.
  • Ronald Biediger of the Texas Heart Instituteis associate director of chemistry, Wafic Said Molecular Cardiology Research Laboratories and leading a group of chemists developing small molecule integrin antagonists and agonists for use as therapies, or as adjuncts to cell based therapies, for heart, lung and vascular disease
  • Mark Clarke of the University of Houstonis associate provost for faculty development and faculty affairs at the University of Houston.
  • Ashutosh Sabharwal of Rice University is professor and Ph.D of electrical engineering and was named Fellow of the Institute of Electrical and Electronics Engineers in 2014 for contributions to the theory and experimentation of wireless systems and networks.
  • Jia Zhou of The University of Texas Medical Branch is professor in the Department Pharmacology and Toxicology focusing on drug discovery of bioactive molecules to probe biological systems or act as potential therapeutic agents in neuroscience, cancer/inflammation, infectious diseases, and other human conditions.

The new class of inventors will be inducted on June 8 at the 10th Annual Meeting of the National Academy of Inventors in Tampa, Florida.

These scientists have already established dozens of patents between the five of them across fields and industries. Clarke specifically holds 13 U.S. patents, seven NASA technology innovation awards, and has founded two life science startup companies to commercialize his technologies, according to a news release from UH.

"Most faculty inventors, including myself, do not begin their research careers focused on creating or commercializing new technologies, nor do they usually know where to start when presented with such an opportunity," Clarke says in the release. "Helping faculty members and students transition fundamental discoveries into commercially valuable technologies and products is not only a key part of our mission as a Tier One research university, it is critical to our region's economic prosperity and ensuring that the U.S. remains competitive in an innovation-driven global economy."

From BCM, Annapragada holds 15 patents in the United States and close to 100 worldwide. The majority of his patents are in next generation imaging technologies, CT vascular imaging, and MR molecular imaging, according to a BCM release, and Annapragada is the founder of two active startup companies — Alzeca Inc. and Sensulin LLC.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

Houston physicist scores $15.5M grant for high-energy nuclear physics research

FUTURE OF PHYSICS

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.