3D Systems announced its acquisition of Volumetric and its plans to keep operations in Houston. Photo via Jordan Miller/Rice University

Houston-based Volumetric Biotechnologies has gone from startup to nine-figure acquisition in a mere three years.

Volumetric, which makes 3D-printed human organs and tissues, agreed October 27 to be purchased by publicly traded 3D Systems, a Rock Hill, South Carolina-based company that specializes in 3D technology, for as much as $400 million. The cash-and-stock deal, expected to be completed this year, will provide $45 million at closing and up to $355 million if Volumetric reaches certain benchmarks.

"Volumetric is already successful in its space with innovative light-based bioprinting," says Jeffrey Graves, president and CEO of 3D Systems. "This acquisition and integration of Volumetric into the 3D Systems family advances our commitment to health care."

Founded in 2018, Volumetric is a privately held spin-out of Rice University's bioengineering department. Its co-founders are Jordan Miller, the company's president, and Bagrat Grigoryan, the chief operating officer. Volumetric participated in the San Francisco-based accelerator Y Combinator in 2020. Investors include two health care nonprofits, the Methuselah Foundation and Methuselah Fund.

Miller, an associate professor of bioengineering at Rice University, will join 3D Systems as chief scientist for regenerative medicine, and Grigoryan will come aboard as vice president of regenerative medicine.

In conjunction with the acquisition, 3D Systems and business partner United Therapeutics, based in Manchester, New Hampshire, will conduct R&D for organ and tissue manufacturing at Volumetric's 20,000-square-foot facility in Houston's East End Maker Hub. Last December, Volumetric moved its operations to the hub. The startup produces human organs and tissues like the liver, kidney, pancreas, lung, and heart using a combination of human cells and medical-grade plastics.

"The vital organs inside of the human body are the most complicated structures in the known universe," Miller says in a news release. "Just as a vibrant city needs roads, a vital organ needs vasculature. Our work to date at Volumetric has focused on 3D bioprinting the intricate blood vessel architecture that is crucial for the function of these organs."

Grigoryan says manufacturing human organs represents a "transformative opportunity" to combat organ diseases.

"Broadening our team's ability to deliver on the promise of organ therapy is a win for patients and medical care around the world, as well as Volumetric shareholders who believed in our promise from early phase development," Grigoryan says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.