Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water.

PFAS have been linked to immune system disruption, certain cancers, liver damage and reproductive disorders. They can be found in water, soil and air, as well as in products like Teflon pans, waterproof clothing and food packaging. They do not degrade easily and are difficult to remove.

Thus far, PFAS cleanup methods have relied on adsorption, in which molecules cling to materials like activated carbon or ion-exchange resins. But these methods tend to have limited capacity, low efficiency, slow performance and can create additional waste.

The Rice-led study, published in the journal Advanced Materials, centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

The study was led by Rice professor Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong. It was conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology, and Keon-Ham Kim, professor at Pukyung National University, who first discovered the LDH material.

The team evaluated the LDH material in river water, tap water and wastewater. And, according to Rice, that material’s unique copper-aluminum layers and charge imbalances created an ideal binding environment to capture PFAS molecules.

“To my astonishment, this LDH compound captured PFAS more than 1,000 times better than other materials,” Chung, lead author of the study and now a fellow at Rice’s WaTER (Water Technologies, Entrepreneurship and Research) Institute and Sustainability Institute, said in a news release. “It also worked incredibly fast, removing large amounts of PFAS within minutes, about 100 times faster than commercial carbon filters.”

Next, Chung, along with Rice professors Pedro Alvarez and James Tour, worked to develop an eco-friendly, sustainable method of thermally decomposing the PFAS captured on the LDH material. They heated saturated material with calcium carbonate, which eliminated more than half of the trapped PFAS without releasing toxic by-products.

The team believes the study’s results could potentially have large-scale applications in industrial cleanups and municipal water treatments.

“We are excited by the potential of this one-of-a-kind LDH-based technology to transform how PFAS-contaminated water sources are treated in the near future,” Wong added in the news release. “It’s the result of an extraordinary international collaboration and the creativity of young researchers.”

This week's roundup of Houston innovators includes James Tour of Rice University, Kristy Phillips of Clean Habits, and Jiming Bao of University of Houston. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a Houston chemist, a cleaning product founder, and a UH researcher.


James Tour, chemist at Rice University

The four-year agreement will support the team’s ongoing work on removing PFAS from soil. Photo via Rice University

A Rice University chemist James Tour has secured a new $12 million cooperative agreement with the U.S. Army Engineer Research and Development Center on the team’s work to efficiently remove pollutants from soil.

The four-year agreement will support the team’s ongoing work on removing per- and polyfluoroalkyl substances (PFAS) from contaminated soil through its rapid electrothermal mineralization (REM) process, according to a statement from Rice.

“This is a substantial improvement over previous methods, which often suffer from high energy and water consumption, limited efficiency and often require the soil to be removed,” Tour says. Read more.

Kristy Phillips, founder and CEO of Clean Habits

What started as a way to bring natural cleaning products in from overseas has turned into a promising application for more sustainable agriculture solutions. Photo via LinkedIn

When something is declared clean, one question invariably springs to mind: just how clean is clean?

Then it is, “What metrics decide what’s clean and what’s not?”

To answer those questions, one must abandon the subjective and delve into the scientific — and that’s where Clean Habits come in. The company has science on its side with Synbio, a patented cleaning formula that combines a unique blend of prebiotics and probiotics for their signature five-day clean.

“Actually, we are a synbiotic, which is a prebiotic and a probiotic fused together,” says Kristy Phillips, founder and CEO of Clean Habits. “And that's what gives us the five-day clean, and we also have the longest shelf life — three years — of any probiotic on the market.” Read more.

Jiming Bao, professor at University of Houston

Th innovative method involves techniques that will be used to measure and visualize temperature distributions without direct contact with the subject being photographed. Photo via UH.edu

A University of Houston professor of electrical and computer engineering, Jiming Bao, is improving thermal imaging and infrared thermography with a new method to measure the continuous spectrum of light.

His innovative method involves techniques that will be used to measure and visualize temperature distributions without direct contact with the subject being photographed, according to the university. The challenges generally faced by conventional thermal imaging is addressed, as the new study hopes to eliminate temperature dependence, and wavelength.

“We designed a technique using a near-infrared spectrometer to measure the continuous spectrum and fit it using the ideal blackbody radiation formula,” Bao tells the journal Device. “This technique includes a simple calibration step to eliminate temperature- and wavelength-dependent emissivity.” Read more.

The four-year agreement will support the team’s ongoing work on removing PFAS from soil. Photo via Rice University

Houston chemist earns $12M grant to support innovative soil pollutant removal process

making moves

A Rice University chemist James Tour has secured a new $12 million cooperative agreement with the U.S. Army Engineer Research and Development Center on the team’s work to efficiently remove pollutants from soil.

The four-year agreement will support the team’s ongoing work on removing per- and polyfluoroalkyl substances (PFAS) from contaminated soil through its rapid electrothermal mineralization (REM) process, according to a statement from Rice.

Traditionally PFAS have been difficult to remove by conventional methods. However, Tour and the team of researchers have been developing this REM process, which heats contaminated soil to 1,000 C in seconds and converts it into nontoxic calcium fluoride efficiently while also preserving essential soil properties.

“This is a substantial improvement over previous methods, which often suffer from high energy and water consumption, limited efficiency and often require the soil to be removed,” Tour said in the statement.

The funding will help Tour and the team scale the innovative REM process to treat large volumes of soil. The team also plans to use the process to perform urban mining of electronic and industrial waste and further develop a “flash-within-flash” heating technology to synthesize materials in bulk, according to Rice.

“This research advances scientific understanding but also provides practical solutions to critical environmental challenges, promising a cleaner, safer world,” Christopher Griggs, a senior research physical scientist at the ERDC, said in the statement.

Also this month, Tour and his research team published a report in Nature Communications detailing another innovative heating technique that can remove purified active materials from lithium-ion battery waste, which can lead to a cleaner production of electric vehicles, according to Rice.

“With the surge in battery use, particularly in EVs, the need for developing sustainable recycling methods is pressing,” Tour said in a statement.

Similar to the REM process, this technique known as flash Joule heating (FJH) heats waste to 2,500 Kelvin within seconds, which allows for efficient purification through magnetic separation.

This research was also supported by the U.S. Army Corps of Engineers, as well as the Air Force Office of Scientific Research and Rice Academy Fellowship.

Last year, a fellow Rice research team earned a grant related to soil in the energy transition. Mark Torres, an assistant professor of Earth, environmental and planetary sciences; and Evan Ramos, a postdoctoral fellow in the Torres lab; were given a three-year grant from the Department of Energy to investigate the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

By analyzing samples from the East River Watershed, the team aims to understand if "Earth’s natural mechanisms of sequestering carbon to combat climate change," Torres said in a statement.

From opioid research to plastics recycling, here are three research projects to watch out for in Houston. Photo via Getty Images

Here are 3 breakthrough innovations coming out of research at Houston institutions

Research Roundup

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research projects, we look into studies on robotics advancing stroke patient rehabilitation, the future of opioid-free surgery, and a breakthrough in recycling plastics.

The University of Houston's research on enhancing stroke rehabilitation

A clinical trial from a team at UH found that stroke survivors gained clinically significant arm movement and control by using an external robotic device powered by the patients' own brains. Image via UH.edu

A researcher at the University of Houston has seen positive results on using his robotics on stroke survivors for rehabilitation. Jose Luis Contreras-Vidal, director of UH's Non-Invasive Brain Machine Interface Systems Laboratory, recently published the results of the clinical trial in the journal NeuroImage: Clinical.

The testing proved that most patients retained the benefits for at least two months after the therapy sessions ended, according to a press release from UH, and suggested even more potential in the long term. The study equipped stroke survivors who have limited movement in one arm with a computer program that captures brain activity to determine the subject's intentions and then works with a robotic device affixed to the affected arm, to move in response to those intentions.

"This is a novel way to measure what is going on in the brain in response to therapeutic intervention," says Dr. Gerard Francisco, professor and chair of physical medicine and rehabilitation at McGovern Medical School at The University of Texas Health Science Center at Houston and co-principal investigator, in the release.

"This study suggested that certain types of intervention, in this case using the upper robot, can trigger certain parts of brain to develop the intention to move," he continues. "In the future, this means we can augment existing therapy programs by paying more attention to the importance of engaging certain parts of the brain that can magnify the response to therapy."

The trial was funded by the National Institute of Neurological Disorders and Stroke and Mission Connect, part of the TIRR Foundation. Contreras-Vidal is working on a longer term project with a National Science Foundation grant in order to design a low-cost system that would allow people to continue the treatments at home.

"If we are able to send them home with a device, they can use it for life," he says in the release.

Baylor College of Medicine's work toward opioid-free surgery

A local doctor is focused on opioid-free options. Photo via Getty Images

In light of a national opioid crisis and more and more data demonstrating the negative effects of the drugs, a Baylor College of Medicine orthopedic surgeon has been working to offer opioid-free surgery recovery to his patients.

"Thanks to a number of refinements, we are now able to perform hip and knee replacements, ranging from straightforward to very complex cases, without patients requiring a single opioid pill," says Dr. Mohamad Halawi, associate professor and chief quality officer in the Joseph Barnhart Department of Orthopedic Surgery, in a press release.

"Pain is one of patients' greatest fears when undergoing surgery, understandably so," Halawi continues. "Today, most patients wake up from surgery very comfortable. Gone are the days of trying to catch up with severe pain. It was a vicious cycle with patients paying the price in terms of longer hospitalization, slower recovery and myriad adverse events."

Halawi explains that his work focuses on preventative measures ahead of pain occurring as well as cutting out opioids before surgery.

"Opioid-free surgery is the way of the future, and it has become a standard of care in my practice," he says. "The ability to provide safer and faster recovery to all patients regardless of their surgical complexity is gratifying. I want to make sure that pain is one less thing for patients to worry about during their recovery."

Rice University's breakthrough on recycling plastics

A team of scientists have found a use for a material that comes out of plastics recycling. Photo via Rice.edu

Houston scientists has found a new use for an otherwise useless byproduct that comes from recycling plastics. Rice University chemist James Tour has discovered that turbostratic graphene flakes can be produced from pyrolyzed plastic ash, and those flakes can then be added to other substances like films of polyvinyl alcohol that better resist water in packaging and cement paste and concrete, as well as strengthen the material.

"This work enhances the circular economy for plastics," Tour says in a press release. "So much plastic waste is subject to pyrolysis in an effort to convert it back to monomers and oils. The monomers are used in repolymerization to make new plastics, and the oils are used in a variety of other applications. But there is always a remaining 10% to 20% ash that's valueless and is generally sent to landfills.

Tour's research has appeared in the journal Carbon. The co-authors of the study include Rice graduate students Jacob Beckham, Weiyin Chen and Prabhas Hundi and postdoctoral researcher Duy Xuan Luong, and Shivaranjan Raghuraman and Rouzbeh Shahsavari of C-Crete Technologies. The National Science Foundation, the Air Force Office of Scientific Research and the Department of Energy supported the research.

"Recyclers do not turn large profits due to cheap oil prices, so only about 15% of all plastic gets recycled," said Rice graduate student Kevin Wyss, lead author of the study. "I wanted to combat both of these problems."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston university is at the top of the class in new college ranking

Top of the Class

Rice University is maintaining its reputation as one of the top colleges in the U.S., according to a new batch of rankings from WalletHub.

Rice topped WalletHub's 2026 lists comparing the best colleges and universities in Texas and the best universities in the South. The private institution also ranked as the 9th best university in the country, three spots lower than its 2024 ranking.

The personal finance website's experts analyzed nearly 800 colleges and universities in the U.S. using 30 key metrics, including factors like student-faculty ratios, graduation rates, campus safety, and many more.

Rice was ranked across seven major categories in the report and scored highly for its faculty resources (No. 10), student educational outcomes (No. 12), student selectivity (No. 16), student career outcomes (No. 26), and campus experience (No. 46).

The only two categories Rice lagged behind in were campus safety (No. 576) and cost and financing (No. 700). U.S. News & World Report says tuition and fees at Rice can add up to more than $65,000 per year for in-state students, with the total cost soaring to nearly $84,000 when factoring in the price for housing, food, books and supplies, transportation, and personal expenses.

In addition to topping WalletHub's rankings, Rice has also claimed top spots in other prestigious lists by U.S. News, Forbes, The Princeton Review, and more. Rice's revered graduate schools – including the MBA program at the Jones Graduate School of Business and Brown School of Engineering and Computing – are also among the best in the country, according to U.S. News and The Princeton Review.

Locally, University of Houston also ranked among the statewide top 10 and ranked as the 268th best university in the U.S. for 2026. In the regional rankings of best universities in the South, UH ranked 52nd on the list

The 10 best colleges and universities in Texas for 2026 are:

  • No. 1 – Rice University, Houston
  • No. 2 – The University of Texas at Austin
  • No. 3 – Trinity University, San Antonio
  • No. 4 – Texas A&M University-College Station
  • No. 5 – Texas Christian University, Fort Worth
  • No. 6 – Austin College, Sherman
  • No. 7 – Southwestern University, Georgetown
  • No. 8 – University of Dallas
  • No. 9 – The University of Texas at Dallas
  • No. 10 – University of Houston
---
This article originally appeared on CultureMap.com.

Port Houston reports emissions progress as cargo volumes climb

Greener growth

Port Houston’s initiatives to reduce emissions have shown some positive results, according to new data from the Port of Houston Authority.

Pulling from the Goods Movement Emissions Inventory (GMEI) report, which tracks port-related air emissions, Port Houston cited several improvements compared to the most recent report from 2019.

The port has seen total tonnage and container volumes increase by 16 percent and 28 percent, respectively, since 2019. However, greenhouse gas emissions have increased at a slower rate, growing only by 10 percent during the same time period, according to the data.

Additionally, emissions of nitrogen oxide fell by 7 percent, and emissions of particulate matter fell by 4 percent, despite adding 280 more pieces of cargo handling equipment.

“These results show that our emission-reduction efforts are working, and we are moving in the right direction,” Chairman Ric Campo said in a news release.

The Port Commission also recently approved items related to the $3 million U.S. Environmental Protection Agency Clean Ports Program (CPP) grant, which it received last year. The items will allow the port to work towards five new sustainability initiatives.

They include:

  1. An inventory of the port’s Scopes 1, 2, and 3 for greenhouse gas emissions
  2. A Port Area Climate Action Plan for the area and surrounding communities
  3. A CPP Truck Route Analysis
  4. Creation of the CPP Trucking Industry Collaborative
  5. Design of a customized website for Port of Houston Partners in Maritime Education, which is a non-profit leading maritime workforce development effort in local schools

Port Houston aims to be carbon neutral by 2050.

Houston leader on building inclusive communities through innovation

Guest Column

Innovation is often celebrated for speed or curiosity, but genuine progress is about inclusion and expanding the populations that benefit from new technologies.

For example, at Yale University, nursing students are now utilizing a hyper-realistic patient mannequin with Down syndrome, which not only mimics appearance but also fosters both empathy and competence in medical professionals who will treat people of all abilities. Tools like this remind us that innovation is not only about what is new, but also about how we include everyone in progress.

Inclusive Technology: What It Means

Inclusive technology design begins with diverse users in mind, including people living with disabilities such as blindness, hearing loss, or limb loss. Additionally, neurodiverse learners and those with varied learning styles benefit from inclusive technology. The purpose is to create tools that serve everyone in their homes, classrooms, workplaces, and public spaces. Inclusive technology is not only about empathy, but also equity. Innovation bridges gaps and extends access to all people.

National and Local Innovations Advancing Inclusion

Across the country, inclusive technology is transforming access for individuals with varying abilities. Robotics adapted for visually impaired students, audio-virtual reality labs for immersive learning, and AI-based platforms that personalize lessons for students are helping students engage in ways traditional tools cannot. These innovations are not just technical; instead, they are also deeply human, designed to expand access and opportunity for every learner.

Locally, Houston-based organizations demonstrate how inclusive tech can be paired with supportive programs to amplify impact:

  • BridgingApps, a program of Easter Seals of Greater Houston, provides assistive-tech labs and mobile devices for children and adults with disabilities, helping students communicate, learn, and connect in ways they may not have thought possible before.
  • MADE Houston creates adaptive classroom environments for twice-exceptional learners (gifted students with learning differences), ensuring that both their strengths and challenges are incorporated in the curriculum and class experiences.

Both programs partner with Camp For All to provide barrier-free camp experiences to their students.

Innovative technology has the power to change student outcomes and improve the quality of life. Reports such as Inclusive Technology in a 21st Century Learning System show that students with disabilities who have access to these tools are two to three times more likely to graduate from high school than those without.

Complementing these technology-driven advances are experiential programs that create community and empowering experiences.

Camp For All, for example, offers medically safe and adaptive camp experiences for children and adults with challenging illnesses, disabilities, or special needs. Camp For All demonstrates how barrier-free environments, combined with opportunities to explore and try new activities, foster confidence and resilience in campers, such as those who benefit from Easter Seals of Greater Houston and MADE Houston camps.

Why This Matters

When tools and technologies are designed to include everyone, the impact has the potential to impact all people. Individuals with physical, sensory, or learning differences gain confidence and access to opportunities, which leads to more diverse workforces and stronger communities.

Technology, educational tools, and thoughtfully designed programs can reduce barriers, improve academic outcomes, and help prepare individuals for future employment and independent living. Conversely, failing to design inclusively can further entrench inequities related to race, income, and abilities.

For context, while the national graduation rate for students with disabilities has risen to 74%, it still lags behind the 88% rate for peers without disabilities. Technology and inclusive programs help bridge this gap, ensuring that not only more students graduate, but that individuals with disabilities also are better prepared to access higher education, participate fully in the workforce, and engage in social and civic life.

Inclusive tools, such as accessible transportation services, audible pedestrian signals, braille ballots for voting, and short-term device loan programs like TTAP, expand opportunities and promote equitable participation across all aspects of society.

Additionally, research shows that early exposure and inclusion of those living with disabilities, such as in classrooms, community spaces, and club activities, fosters a greater acceptance of differences and proclivity toward inclusive attitudes as children mature. When we begin focusing on acceptance and innovative solutions for all people from the very beginning, our communities are stronger and we increase access to participation for all.

Challenges, Opportunities, and Ripple Effects

Despite progress, obstacles to scaling inclusive technology remain. Many families and schools cannot afford high-end assistive devices, and tools are often developed without input from the users who will rely on them the most.

Although grants and pilot programs exist, systemic funding and support are still limited. Educators, healthcare providers, and city planners also require training and guidance to effectively implement these tools. Overcoming these challenges requires coordinated efforts among technology companies, educators, nonprofits, policymakers, and the communities they serve.

Houston’s rich mix of innovation, research institutions, and nonprofit networks makes it an ideal testing ground for inclusive technology, and we are seeing more advancements daily. Schools and early learning centers are piloting innovative tools, including adaptive learning software, interactive robotics, music therapy, and word prediction programs.

At the same time, medical and therapy programs use simulation labs and telehealth tools to improve treatment for children and adults with disabilities. Civic and public spaces are also becoming more accessible through smart city initiatives such as wayfinding apps, inclusive playgrounds, and sensory-friendly public areas. These examples demonstrate that inclusive technology is about creating meaningful opportunities for everyone, regardless of ability, background, or resources.

When inclusion is prioritized, the benefits extend far beyond individual users. Educational outcomes improve as more students meet learning goals and graduate successfully. Workforce readiness increases as a broader range of skills and abilities enters the labor market. Community equity grows as individuals from underserved communities gain access to tools and experiences that were previously inaccessible.

Increasing participation for students and individuals translates into stronger local and state economies. At its core, inclusive technology creates equity and resilience at both the individual and community level.

Moving Forward

Designing with empathy, investing in equitable access, and acting with urgency are essential to building communities where everyone has the opportunity to contribute. Houston, with its combination of medical research institutions, ed-tech startups, aerospace leadership, nonprofit networks, and pilot programs, is uniquely positioned to lead the nation in inclusive innovation.

By prioritizing technology and programs that serve all learners, the city can demonstrate that meaningful progress is measured not by speed or novelty, but by the number of people who benefit from it. When cities, organizations, and communities commit to inclusive design, they build stronger and more equitable places where everyone benefits and thrives.

---

Pat Prior Sorrells is president and CEO of Camp For All, a Texas-based nonprofit organization. Located in Burton, Texas, the 206-acre Camp For All site was designed with no barriers for children and adults with special needs to experience the joy of camping and nature. Camp For All collaborates with more than 65 nonprofit organizations across the Greater Houston area and beyond to enable thousands of campers and their families to discover life each year. She speaks regularly on the need for inclusive design in public spaces.