From biomolecular research to oral cancer immunotherapy, here are three research projects to watch out for in Houston. Photo via Getty Images

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research news, a couple local scientists are honored by awards while another duo of specialists tackle a new project.

University of Houston professor recognized with award

Mehmet Orman of UH has been selected to receive an award for his research on persister cells. Photo via UH.edu

Mehmet Orman, assistant professor of chemical and biomolecular engineering at the University of Houston Cullen College of Engineering has been honored with a Faculty Early Career Development Award from the National Science Foundation. The award comes with a $500,000 grant to study persister cells — cells that go dormant and then become tolerant to extraordinary levels of antibiotics.

"Nearly all bacterial cultures contain a small population of persister cells," says Orman in a news release. "Persisters are thought to be responsible for recurring chronic infections such as those of the urinary tract and for creating drug-resistant mutants."

Previously, Orman developed the first methods to directly measure the metabolism of persister cells. He also developed cell sorting strategies to segregate persisters from highly heterogeneous bacterial cell populations, and, according to the release, he will be using his methods in the NSF research project.

Houston researchers collaborate on oral cancer innovation

Dr. Simon Young of UTHealth and Jeffrey Hartgerink of Rice University are working on a new use for an innovative gel they developed. Photo via Rice.edu

Two Houston researchers — chemist and bioengineer Jeffrey Hartgerink at Rice University and Dr. Simon Young at the University of Texas Health Science Center at Houston — have again teamed up to advance their previous development of a sophisticated hydrogel called STINGel. This time, they are using it to destroy oral cancer tumors.

SynerGel combines a pair of antitumor agents into a gel that can be injected directly into tumors. Once there, the gel controls the release of its cargo to not only trigger cells' immune response but also to remove other suppressive immune cells from the tumor's microenvironment. The duo reported on the technology in the American Chemical Society journal ACS Biomaterials Science & Engineering.

SynerGel, combines a pair of antitumor agents into a gel that can be injected directly into tumors, where they not only control the release of the drugs but also remove suppressive immune cells from the tumor's microenvironment.

"We are really excited about this new material," Hartgerink says in a news release. "SynerGel is formulated from a specially synthesized peptide which itself acts as an enzyme inhibitor, but it also assembles into a nanofibrous gel that can entrap and release other drugs in a controlled fashion.

In 2018, the pair published research on the use of a multidomain peptide gel — the original STINGel — to deliver ADU-S100, an immunotherapy drug from a class of "stimulator of interferon gene (STING) agonists."

The research is supported by the Oral and Maxillofacial Surgery Foundation, the National Institutes of Health, the Welch Foundation, the National Science Foundation and the Mexican National Council for Science and Technology.

Texas Heart Institute researcher honored by national organization

Dr. James Martin of Texas Heart Institute has been named a senior member of the National Academy of Inventors. Photo courtesy of THI

The National Academy of Inventors have named Houston-based Texas Heart Institute's Dr. James Martin, director of the Cardiomyocyte Renewal Lab, a senior member.

Martin is an internationally recognized developmental and regenerative biologist and his research is focused on understanding how signaling pathways are related to development and tissue regeneration.

"Dr. Martin has long been a steward of scientific advancement and has proven to be a tremendous asset to the Texas Heart Institute and to its Cardiomyocyte Renewal Lab through his efforts to translate fundamental biological discoveries in cardiac development and disease into novel treatment strategies for cardiac regeneration," says Dr. Darren Woodside, vice president for research at THI, in a news release. "Everyone at the Texas Heart Institute is thrilled for Dr. Martin, whose induction into the NAI as a Senior Member is well-deserved."

Martin has authored over 170 peer-reviewed papers in top journals he holds nine U.S. patents and applications, including one provisional application, all of which have been licensed to Yap Therapeutics, a company he co-founded.

The full list of incoming NAI Senior Members, which includes three professionals from the University of Houston, is available on the NAI website.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.