Owning or even imagining that you own an object linked to a particular task can make you feel — and act — more like an adept. Photo via Getty Images

Want to get better at a task? It may be possible to shop — or imagine — your way to success.

Just pretending to shop for items associated with certain skills (for example, a fancy calculator) may actually improve your performance in areas related to that skill (in this case, math).

That’s because our identities are highly influenced by our possessions — which we often experience as part of ourselves. As a result, this activation of an identity by our possessions, even imaginary ones, can enhance performance. For example, one study found that by using a pen labeled “MIT” on GRE exams, students scored higher than those using a standard Pilot pen, particularly when they believed that their inner ability was fixed, and that they had to rely on external products to improve their ability.

In 2018, Rice Business professor Jaeyeon Chung and Gita V. Johar of Columbia University took a close look at the implications of this human quirk.

In a series of experiments, Chung and Johar found that the product-related activation of our identities (e.g., calculator ownership awakening an inner math prodigy) can actually de-activate our identities unrelated to the product, and undermine performance in other tasks.

For example, shopping for a calculator could make you perform better on a math test, but worse on a creative-writing essay.

Merely owning an item, the scholars discovered, is only part of the equation. Self-concept clarity — that is, the strength and clarity of one’s personal beliefs — makes a difference as well. A person whose self-concept is well-defined, consistent, and stable is less likely to be influenced by external factors such as possessions.

To measure the phenomenon, Chung and her colleague devised a series of experiments. The results showed that when a person merely imagines an item she longs to own, two inner changes occur: Identities related to the product are awakened, and identities unrelated to the desired object are stifled. Strikingly, these changes have measurable consequences on the performance of tasks.

But how do you awaken an inner self through possession, and measure its effects? The team found an ingenious approach: They assigned people to a control group or an experimental group, and then asked them to peruse an online IKEA. The control group was told to shop for items to go in a senior citizen home. The experimental group shopped for items to go into their own homes.

The experimental group, who got to imagine items such as a MALM bed in their own bedrooms, were more likely to think of themselves as artistic designers than were their counterparts, the imaginary retirement home shoppers. The exercise, in other words, had activated participants’ art-related identities.

Next, Chung and Johar asked everyone to complete a math task. The experimental group scored lower at this than did those in the control group. Their newly awakened identities as design mavens had undermined their ability to solve math problems, apparently because they were unrelated to the fetching Scandinavian décor they’d imagined owning.

The researchers then took another approach. Asking one group of participants to imagine owning a calculator, they activated that group’s “math identity.” They then asked all the participants to engage in a short IQ test. Though there was only one test, the researchers labeled it two different ways, indicating to some participants that the test measured math skills, and to others that it measured creative writing skills.

Despite the test being exactly the same, the would-be calculator owners performed markedly worse when they thought they were doing a creative writing project than when they thought the test measured their math skills. Why, exactly? The researchers concluded that imagining owning a piece of math-y technology and activating their “math person identities” tamped down participants’ “creative writer” identities — so much so that it actually degraded their performance in that area.

In a third experiment, Chung and Johar asked a group to envision calculators that they actually owned, rather than simply imagining buying one. Again, the group that felt ownership regarding a math tool performed better on tasks that seemed math-related, but worse on tasks that seemed unrelated to math. The finding was robust when the task itself was exactly the same and the only difference how the task was labeled.

Interestingly, identity activation and performance were influenced by the participants’ level of self-concept clarity. Some people have a clear and consistent self-view that does not vary over time; these are individuals who are less likely to rely on their possessions or other environmental stimuli to infer who they are. These individuals were less likely to be affected by the “ownership” of a calculator.

In other words, self-concept clarity limited the power of ownership on identity activation and performance. Chung and Johar’s findings offer practical implications for both business and academia. Owning or even imagining that you own an object linked to a particular task can make you feel — and act — more like an adept.

So the next time you have a big quantitative test coming up, consider browsing for a high-end calculator first — and unwinding with your oil paints or “Infinite Jest” when you’re done. For best results, of course, take the test with your Rice-labeled pen.

------

This article originally ran on Rice Business Wisdom and was based on research from Jaeyeon (Jae) Chung is an assistant professor of marketing at Jones Graduate School of Business at Rice University. 

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston hardtech accelerator names 8 scientists to 2025 cohort

ready, set, activate

National hardtech-focused organization Activate has named its 2025 cohort of scientists, which includes new members to Activate Houston.

The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. The organization also offers a virtual and remote cohort, known as Activate Anywhere. Collectively, the 2025 Activate Fellowship consists of 47 scientists and engineers from nine U.S. states.

This year's cohort comprises subject matter experts across various fields, including quantum, robotics, biology, agriculture, energy and direct air capture.

Activate aims to support scientists at "the outset of their entrepreneurial journey." It partners with U.S.-based funders and research institutions to support its fellows in developing high-impact technology. The fellows receive a living stipend, connections from Activate's robust network of mentors and access to a curriculum specific to the program for two years.

“Science entrepreneurship is the origin story of tomorrow’s industries,” Cyrus Wadia, CEO of Activate, said in an announcement. “The U.S. has long been a world center for science leadership and technological advancement. When it comes to solving the world’s biggest challenges, hard-tech innovation is how we unlock the best solutions. From infrastructure to energy to agriculture, these Activate Fellows are the bold thinkers who are building the next generation of science-focused companies to lead us into the future.”

The Houston fellows selected for the 2025 class include:

  • Jonathan Bessette, founder and CEO of KIRA, which uses its adaptive electrodialysis system to treat diverse water sources and reduce CO2 emissions
  • Victoria Coll Araoz, co-founder and chief science officer of Florida-based SEMION, an agricultural technology company developing pest control strategies by restoring crops' natural defenses
  • Eugene Chung, co-founder and CEO of Lift Biolabs, a biomanufacturing company developing low-cost, nanobubble-based purification reagents. Chung is completing his Ph.D. in bioengineering at Rice University.
  • Isaac Ju, co-founder of EarthFlow AI, which has developed an AI-powered platform for subsurface modeling, enabling the rapid scaling of carbon storage, geothermal energy and lithium extraction
  • Junho Lee, principal geotechnical engineer of Houston-based Deep Anchor Solutions, a startup developing innovative anchoring systems for floating renewables and offshore infrastructure
  • Sotiria (Iria) Mostrou, principal inventor at Houston-based Biosimo Chemicals, a chemical engineering startup that develops and operates processes to produce bio-based platform chemicals
  • Becca Segel, CEO and founder of Pittsburgh-based FlowCellutions, which prevents power outages for critical infrastructure such as hospitals, data centers and the grid through predictive battery diagnostics
  • Joshua Yang, CEO and co‑founder of Cambridge, Massachusetts-based Brightlight Photonics, which develops chip-scale titanium: sapphire lasers to bring cost-effective, lab-grade performance to quantum technologies, diagnostics and advanced manufacturing

The program, led locally by Houston Managing Director Jeremy Pitts, has supported 296 Activate fellows since the organization was founded in 2015. Members have gone on to raise roughly $4 billion in follow-on funding, according to Activate's website.

Activate officially named its Houston office in the Ion last year.

Charlie Childs, co-founder and CEO of Intero Biosystems, which won both the top-place finish and the largest total investment at this year's Rice Business Plan Competition, was named to the Activate Anywhere cohort. Read more about the Boston, New York, Berkley and Activate Anywhere cohorts here.

Houston team’s discovery brings solid-state batteries closer to EV use

A Better Battery

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

---

This article originally appeared on EnergyCaptialHTX.com.

Rice biotech accelerator appoints 2 leading researchers to team

Launch Pad

The Rice Biotech Launch Pad, which is focused on expediting the translation of Rice University’s health and medical technology discoveries into cures, has named Amanda Nash and Kelsey L. Swingle to its leadership team.

Both are assistant professors in Rice’s Department of Bioengineering and will bring “valuable perspective” to the Houston-based accelerator, according to Rice. 

“Their deep understanding of both the scientific rigor required for successful innovation and the commercial strategies necessary to bring these technologies to market will be invaluable as we continue to build our portfolio of lifesaving medical technologies,” Omid Veiseh, faculty director of the Launch Pad, said in a news release.

Amanda Nash

Nash leads a research program focused on developing cell communication technologies to treat cancer, autoimmune diseases and aging. She previously trained as a management consultant at McKinsey & Co., where she specialized in business development, portfolio strategy and operational excellence for pharmaceutical and medtech companies. She earned her doctorate in bioengineering from Rice and helped develop implantable cytokine factories for the treatment of ovarian cancer. She holds a bachelor’s degree in biomedical engineering from the University of Houston.

“Returning to Rice represents a full-circle moment in my career, from conducting my doctoral research here to gaining strategic insights at McKinsey and now bringing that combined perspective back to advance Houston’s biotech ecosystem,” Nash said in the release. “The Launch Pad represents exactly the kind of translational bridge our industry needs. I look forward to helping researchers navigate the complex path from discovery to commercialization.”

Kelsey L. Swingle

Swingle’s research focuses on engineering lipid-based nanoparticle technologies for drug delivery to reproductive tissues, which includes the placenta. She completed her doctorate in bioengineering at the University of Pennsylvania, where she developed novel mRNA lipid nanoparticles for the treatment of preeclampsia. She received her bachelor’s degree in biomedical engineering from Case Western Reserve University and is a National Science Foundation Graduate Research Fellow.

“What draws me to the Rice Biotech Launch Pad is its commitment to addressing the most pressing unmet medical needs,” Swingle added in the release. “My research in women’s health has shown me how innovation at the intersection of biomaterials and medicine can tackle challenges that have been overlooked for far too long. I am thrilled to join a team that shares this vision of designing cutting-edge technologies to create meaningful impact for underserved patient populations.”

The Rice Biotech Launch Pad opened in 2023. It held the official launch and lab opening of RBL LLC, a biotech venture creation studio in May. Read more here.