The funding announced Monday by the Commerce Department is part of a total investment in the cluster that, with private money, is expected to exceed $40 billion. Photo via Getty Images

The Biden administration has reached an agreement to provide up to $6.4 billion in direct funding for Samsung Electronics to develop a computer chip manufacturing and research cluster in Texas.

The funding announced Monday by the Commerce Department is part of a total investment in the cluster that, with private money, is expected to exceed $40 billion. The government support comes from the CHIPS and Science Act, which President Joe Biden signed into law in 2022 with the goal of reviving the production of advanced computer chips domestically.

“The proposed project will propel Texas into a state of the art semiconductor ecosystem,” Commerce Secretary Gina Raimondo said on a call with reporters. “It puts us on track to hit our goal of producing 20% of the world’s leading edge chips in the United States by the end of the decade.”

Raimondo said she expects the project will create at least 17,000 construction jobs and more than 4,500 manufacturing jobs.

Samsung's cluster in Taylor, Texas, would include two factories that would make four- and two-nanometer chips. Also, there would be a factory dedicated to research and development, as well as a facility for the packaging that surrounds chip components.

The first factory is expected to be operational in 2026, with the second being operational in 2027, according to the government.

The funding also would expand an existing Samsung facility in Austin, Texas.

Lael Brainard, director of the White House National Economic Council, said Samsung will be able to manufacture chips in Austin directly for the Defense Department as a result. Access to advanced technology has become a major national security concern amid competition between the U.S. and China.

In addition to the $6.4 billion, Samsung has indicated it also will claim an investment tax credit from the U.S. Treasury Department.

The government has previously announced terms to support other chipmakers including Intel and Taiwan Semiconductor Manufacturing Co. in projects spread across the country.

A team from HCC won the top prize at a tech competition. Photo courtesy of HCC

3 Houston students win international AI competition

top of class

A team of students from Houston Community College Southwest took home the top prize at the Intel AI Global Impact Festival in San Jose, California, last month for AI-based technology they developed to boost safety in the workplace.

Serr Brown, a correctional officer taking classes at HCC; Dina Marie Stager, an office manager at a marketing firm advancing her computer science skills; and student Ryan Galbraith made up the three-person team. Stager is now the first woman to receive the Intel festival’s top prize.

Over the span of three months, the team developed their Indoor Industrial Safety Program, which uses AI and a high-performance drone to map indoor industrial sites and create a 3D digital replica in about 30 minutes. The program aims to help companies better understand its building layout before making additions or improvements, among other uses.

“It’s no small feat,” G. Raymond Brown, HCC AI program coordinator, said in a statement. “It’s difficult to get coordinate data indoors. The problem was solved by the students by using AI to provide the drone with coordinates and accuracy needed to build a 3D model.”

Each member of the team was awarded $5,000, an Intel-powered laptop, and mentorship opportunities after beating out more than 1,000 other entries from 25 nations.

Intel Corporation is an education partner of HCC’s AI associate degree program, which was launched in the summer of 2020. The first class of AI students graduated from the two-year program earlier this year, according to the college.

“I believe that AI has the potential to change the world for the better, and I am excited to be part of the field,” Brown said in a statement. “I am looking forward to learning more about AI and how it can be used to improve the lives of people across the world.”

The inaugural Smart Cities accelerator in Houston will have its cohort create solutions for a set of problems the city faces. Sky Noir Photography by Bill Dickinson/Getty Images

5 things you need to know about Houston's Microsoft- and Intel-backed accelerator program

New to town

At a Microsoft IoT in Action event in April, Mayor Sylvester Turner announced that the city would launch the Ion Smart Cities Accelerator — a program that would task a set of startups and entrepreneurs with creating digital and technical solutions to key problems within Houston.

"As a result of incorporating smart technologies, Houston will have the ability to create a more resilient and mobile-friendly city, and in turn accelerate our city's economic growth and prepare for the needs of 21st Century citizens," Mayor Turner says in a release.

While there's still a lot to finalize within this new program before the first cohort begins in September, here are the five things you need to know about the accelerator.

It's an effort from multiple parties.  

There are several major players behind the initiative. Station Houston will host the accelerator — first in its current headquarters and then later from The Ion when it opens in 2020. Station will also team up with TX/RX, a nonprofit makerspace in East Downtown, to be a resource for engineering and design elements.

Microsoft and Intel are backing the program — both monetarily and various other support roles.

"For me, having been doing this for a few years now, it's such a huge step for the city," Gabriella Rowe, CEO of Station Houston, tells InnovationMap. "We are not only talking about major companies in the world of technology to make a significant investment in our startup community, but that investment that they are making is in our city as well. That is not to be underestimated."

The first cohort's goals will be to find solutions within mobility and resilience. 

Key stakeholders within the program identified mobility and resilience as the two focus points the first cohort will work within. Currently, the stakeholders are again narrowing down the topics to identify 10 problems within mobility and resilience, which the cohort will then be tasked with solving.

The accelerator, which is currently set up to have one cohort a year, Rowe says, will then identify other various issues within Houston in subsequent cohorts.

"There will be, what seems at this point, an endless array of challenges the entrepreneurs in the accelerator can address," Rowe says.

Should the opportunity arise, Rowe says, the organization could also launch a concurrent cohort in six months, rather than waiting until next year.

The cohort will come from across the country. 

Once the list of 10 problems to solve has been finalized, the organization will go on a national search to find the cohort.

"Of course we hope we will be able to find some fabulous companies here at home, but we are also hoping we are enabling companies from around the rest of the United States to discover Houston," Rowe says.

A selection committee made up of stakeholders from all the participating organizations will evaluate the applications and selections.

"We not only want to be sure we are bringing in geographic diversity, but we also want to bring in industry diversity because that will allow challenging perspectives when problem solving," says Rowe.

A key part of this process is getting the word out about the program. Station hosted a launch event on May 30 to introduce the program to Houston.

"We can only be successful as the companies we can attract to be a part of the accelerator," Rowe says.

How it will work.

The 10-month program will have 10 startups per cohort, and the programming will be broken down into three phases. The first three months will be a time of discovery and ideating with a structured curriculum designed around mobility and resiliency. Next, the startups will prototype and validate their products. The second half of the accelerator will be pilot programs within the city of Houston.

The ultimate goal is to better Houston as a whole.

The Ion Smart Cities Accelerator is different than anything else Houston has to offer, Rowe says, mainly because its primary goal is creating solutions for some of Houston's biggest problems.

"We now finally for Houston to take the advancements we've made in innovation — especially in tech — and bring it into the lives of everyone," Rowe says. "It's wonderful in so many ways, but it puts a tremendous amount of responsibility on our shoulders to make sure we are doing this with the communities of Houston as opposed to doing it to the communities of Houston."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC, Memorial Hermann launch partnership to spur new patient care technologies

medtech partnership

Texas Medical Center and Memorial Hermann Health System have launched a new collaboration for developing patient care technology.

Through the partnership, Memorial Hermann employees and physicians will now be able to participate in the TMC Center for Device Innovation (CDI), which will assist them in translating product innovation ideas into working prototypes. The first group of entrepreneurs will pitch their innovations in early 2026, according to a release from TMC.

“Memorial Hermann is excited to launch this new partnership with the TMC CDI,” Ini Ekiko Thomas, vice president of information technology at Memorial Hermann, said in the news release. “As we continue to grow (a) culture of innovation, we look forward to supporting our employees, affiliated physicians and providers in new ways.”

Mentors from Memorial Hermann, TMC Innovation and industry experts with specialties in medicine, regulatory strategy, reimbursement planning and investor readiness will assist with the program. The innovators will also gain access to support systems like product innovation and translation strategy, get dedicated engineering and machinist resources and personal workbench space at the CDI.

“The prototyping facilities and opportunities at TMC are world-class and globally recognized, attracting innovators from around the world to advance their technologies,” Tom Luby, chief innovation officer at TMC Innovation Factor, said in the release.

Memorial Hermann says the partnership will support its innovation hub’s “pilot and scale approach” and hopes that it will extend the hub’s impact in “supporting researchers, clinicians and staff in developing patentable, commercially viable products.”

“We are excited to expand our partnership with Memorial Hermann and open the doors of our Center for Device Innovation to their employees and physicians—already among the best in medical care,” Luby added in the release. “We look forward to seeing what they accomplish next, utilizing our labs and gaining insights from top leaders across our campus.”

Google to invest $40 billion in AI data centers in Texas

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.

TMCi names 11 global startups to latest HealthTech Accelerator cohort

new class

Texas Medical Center Innovation has named 11 medtech startups from around the world to its latest HealthTech Accelerator cohort.

Members of the accelerator's 19th cohort will participate in the six-month program, which kicked off this month. They range from startups developing on-the-go pelvic floor monitoring to 3D-printed craniofacial and orthopedic implants. Each previously participated in TMCi's bootcamp before being selected to join the accelerator. Through the HealthTech Accelerator, founders will work closely with TMC specialists, researchers, top-tier hospital experts and seasoned advisors to help grow their companies and hone their clinical trials, intellectual property, fundraising and more.

“This cohort of startups is tackling some of today’s most pressing clinical challenges, from surgery and respiratory care to diagnostics and women’s health," Tom Luby, chief innovation officer at Texas Medical Center, said in a news release. "At TMC, we bring together the minds behind innovation—entrepreneurs, technology leaders, and strategic partners—to help emerging companies validate, scale, and deliver solutions that make a real difference for patients here and around the world. We look forward to seeing their progress and global impact through the HealthTech Accelerator and the support of our broader ecosystem.”

The 2025 HealthTech Accelerator cohort includes:

  • Houston-based Respiree, which has created an all-in-one cardiopulmonary platform with wearable sensors for respiratory monitoring that uses AI to track breathing patterns and detect early signs of distress
  • College Station-based SageSpectra, which designs an innovative patch system for real-time, remote monitoring of temperature and StO2 for assessing vascular occlusion, infection, and other surgical flap complications
  • Austin-based Dynamic Light, which has developed a non-invasive imaging technology that enables surgeons to visualize blood flow in real-time without the need for traditional dyes
  • Bangkok, Thailand-based OsseoLabs, which develops AI-assisted, 3D-printed patient-specific implants for craniofacial and orthopedic surgeries
  • Sydney, Australia-based Roam Technologies, which has developed a portable oxygen therapy system (JUNO) that provides real-time oxygen delivery optimization for patients with chronic conditions
  • OptiLung, which develops 3D-printed extracorporeal blood oxygenation devices designed to optimize blood flow and reduce complications
  • Bengaluru, India-based Dozee, which has created a smart remote patient monitor platform that uses under-the-mattress bed sensors to capture vital signs through continuous monitoring
  • Montclair, New Jersey-based Endomedix, which has developed a biosurgical fast-acting absorbable hemostat designed to eliminate the risk of paralysis and reoperation due to device swelling
  • Williston, Vermont-based Xander Medical, which has designed a biomechanical innovation that addresses the complications and cost burdens associated with the current methods of removing stripped and broken surgical screws
  • Salt Lake City, Utah-based Freyya, which has developed an on-the-go pelvic floor monitoring and feedback device for people with pelvic floor dysfunction
  • The Netherlands-based Scinvivo, which has developed optical imaging catheters for bladder cancer diagnostics