Hylio, based just south of Houston, is setting out to bring the agriculture industry into the 21st century. Photo courtesy of Hylio

Renowned American inventor Thomas Edison once said, "There's a way to do it better, find it."

That timeless adage has been the spark that has ignited countless technological advances over the years and Hylio is no different, applying it to its own mission to disrupt the agricultural technology space.

With rampant systemic inefficiencies with current crop spraying solutions negatively affecting farm economics, Hylio developed its AgroDrone, a precision crop spraying drone system that is revolutionizing ag-tech.

"Our company started about five years ago, when we were delivering in Central America and noticed the way people were doing spraying was extremely inefficient," says Arthur Erickson, CEO and co-founder of Hylio. "They were doing it either by hand or by plane or helicopter. If you are doing it by hand, you are doing it extremely slow and very inaccurate. If you're doing it by plane or helicopter, you're doing it faster, but you're extremely inaccurate."

In most cases, when farmers use traditional crop spraying methods such as helicopter or plane, up 90 percent of the fertilizer or pesticides miss their intended targets or float away.

However, AgroDrone, which was recently accepted into the Capital Factory accelerator, provides for a very precise method of applying those chemicals with its intuitive planning system, which monitors and controls the spray volumes using pre-existing map files or polygons.

"For the past year, we've been our own first customer," says Erickson. "We've used the technology in El Salvador, Honduras and Guatemala on 40,000 acres. We learned the product and what made it more efficient by using it in the field 10 hours a day. We built this from the ground up using it as a farmer would. We worked out all the bugs, optimized it and made it reliable, so when farmers are out there in the mud or in the rain, it still works."

The drone's flight software allows it to be completely turnkey. The electron-based application can be run on any cross platform and gives pilots control over the drone at all times.

Additionally, the redundant critical flight system ensures stable flight.

"Our software was made completely in house," says Erickson. "Like a Google map interface, you can set up your own pre-loaded missions, in different polygon shapes, draw them yourself or import polygon files and generate missions for the drone to fly."

Because of the radar altimeters fitted on the drones, farmers are able to reduce the amount of chemicals they use because the drones maintain optimal height over crops at all times, which minimizes drift and maximizes application quality.

"If you talk to any farmer that has 400 acres of corn, for example, and they want to get it sprayed, it would cost them maybe $400 times 10 for labor times 10 for chemicals, so about $8000," says Erickson. "The problem is they're providing a brute force solution to a problem that is very simple to solve with a drone.

"If they've got weeds on their 400 acres, and the weeds are only on one or two acres, little spots in the field, they just want to eliminate those spots, so they don't need to pay someone to spray their entire field, so they're saving the chemical cost per acre is $10 bucks. So if they run our drone for 10 minutes, they're literally saving $7,000 or more."

The innovators behind Hylio started the company because they were passionate about drones, but saw that the crop spraying system for farmers was broken and inefficient, so they sought to make the process better and more sustainable.

"Farmers are responsible for how we eat, how everyone eats," says Erickson. "The current technologies used in agriculture is outdated and not very cost effective. We looked at the farm economics and wanted to help develop viable solutions. Every farmer has to battle weeds; it is universal. All crop and weeds are different, but it is the same concept. The more you control the weeds, the more money you make at the end of the year. A farmer could lose 20 percent or more of their crops if they do not control their weeds properly. Despite the inefficiencies and razor thin margins, farmers still use helicopters and planes because they have to kill those weeds.

"There's a better way to do it with drones and it comes at a fraction of the price."

The AgroDrone starts at $19,300 and is delivered to the farmer fully tested and assembled. The package includes four pairs of 30,000 mAh 22V LiPo batteries, charging equipment, one handheld GPS tracker unit and access to the Hylio AgroSol Mission Control Software.

The software, which was designed by farmers for farmers, requires a recurring monthly fee that ranges from $100 to $500 depending on the level.

Hylio also provides the central device that can control multiple drones at the same time and service hundreds of acres per day.

"The people that are doing the weed control spraying for farmers literally won't come out because it's not worth their time to just come out and spray one or two acres," says Erickson. "So even if a farmer has a problem that they know is only on one or two acres, they have to spray the whole thing, because they market will only allow people to spray the entire amount. They cannot come out and afford to spray one or two acres. However, if you buy a drone, you can do it yourself with the click of a button. Farmers are saving literally $10,000 per application depending on how big their crop is."

According to the US Department of Agriculture, American farmers received $11.5 billion in subsidies in 2017. That number will be drastically higher in 2019 to offset the market losses farmers will see due to President Donald Trump's trade war with China.

With profits in continual decline, Hylio's mission to improve margins for farmers continues.

"Farming is heavily subsidized now," says Erickson. "None of them are making money, so they desperately need something to increase their bottom lines. We are here to make farmers' lives better and help them feed us better. It's a win win."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”

Axiom Space wins NASA contract for fifth private mission, lands $350M in financing

ready for takeoff

Editor's note: This story has been updated to include information about Axiom's recent funding.

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Axiom also announced today, Feb. 12, that it has secured $350 million in a financing round led by Type One Ventures and Qatar Investment Authority.

The company shared in a news release that the funding will support the continued development of its commercial space station, known as Axiom Station, and the production of its Axiom Extravehicular Mobility Unit (AxEMU) under its NASA spacesuit contract.

NASA awarded Axiom a contract in January 2020 to create Axiom Station. The project is currently underway.

"Axiom Space isn’t just building hardware, it’s building the backbone of humanity’s next era in orbit," Tarek Waked, Founding General Partner at Type One Ventures, said in a news release. "Their rare combination of execution, government trust, and global partnerships positions them as the clear successor-architect for life after the ISS. This is how the United States continues to lead in space.”

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.