VR training startup, HTX Labs, recently brought on Houston-based Solvay GBU Peroxides North America as a client. Trainees can work on a digitized version of the plant that looks as real as could be. Courtesy of HTX Labs

Many employers are doing reality checks when it comes to workplace training. They're wondering how they can better train their workers. But they're realizing that traditional training can be dull and even unproductive, so they're enlivening and enriching their training through virtual reality.

Houston-based startup HTX Labs LLC is one of the tech companies at the forefront of the VR-infused modernization of workplace training. Among its customers are the United States Air Force, Mastercard, Rackspace, and Houston-based Solvay GBU Peroxides North America, a maker of hydrogen peroxide.

For the Air Force, HTX Labs creates software that provides immersive training for pilots on how to deal with emergency procedures in the air and on the ground. This is something that traditionally has been carried out only with expensive simulators. Mastercard and Rackspace rely on HTX Labs' technology to teach employees — through VR-generated replicas of actual workspaces — how to handle active-shooter situations, workplace violence, and fires.

Solvay turned to the company for VR-propelled help with training workers about loading and unloading hazardous materials and other aspects of maintaining safety around potentially dangerous chemicals. HTX Labs and Solvay will jointly resell their VR-based courses to other companies, says Scott Schneider, founder and CEO of HTX Labs.

At its core, the company's VR training zeroes in on the trainee, providing engaging, interactive experiences that stress "learning by doing," Schneider says.

Training programs that have been around for decades are "designed for trainers, not necessarily for trainees," he says.

"A PowerPoint presentation, a YouTube video — it's all about the message the trainer wants to convey as opposed to 'Let's think about how people actually learn.' Studies show people learn by actively doing — active learning versus passive learning," Schneider continues. "We married that idea of active learning with virtual reality and immersive technology to deliver a learning experience that increases retention and the development of muscle memory."

In a VR-based training session, participants are equipped with VR headsets and are plunged into realistic environments where they're presented with scenarios in which they, for instance, pick up a fire extinguisher and put out a blaze, or they land or eject from a military jet that's experiencing a problem such as an engine fire.

Schneider says this type of interactive training helps participants boost the amount of information they remember. According to the Society for Human Resource Management, VR learners retain 75 percent of what they've been taught, compared with a 10 percent retention rate from reading or listening to a presentation.

"It's a much better way, a much more realistic way to learn," Schneider says.

Employers big and small are catching on to this kind of advanced training. According to Schneider, software produced by companies like HTX Labs allows employers to conduct training that:

  • Avoids unsafe real-life settings in favor of safe virtual settings.
  • Does not disrupt workplaces.
  • Reduces costs.

A CNBC article says the cost-saving aspect appeals to a number of employers like Boeing, UPS, and Walmart.

"Training facilities cost hundreds of thousands, if not millions, of dollars to build. Sending out-of-town employees to them racks up travel expenses. And the lost time for training is considerable," the article reads.

By comparison, a one-time investment in VR hardware and software — technology that can be used by many workers — might cost a couple of thousand dollars per employee.

"Most companies in the private sector are dipping their toes into it a bit, maybe doing some stuff internally," Schneider says of VR-based training. "But on a larger scale, there's not a lot of players doing exactly what we're doing."

Schneider envisions HTX Labs, which was founded in 2017, expanding into training centered on augmented reality and mixed reality.

For the uninitiated, VR refers to computer-generated 3D environments that you interact with and are immersed in, according to Live Science. AR superimposes sounds, images and text onto what you see in the real world, along the lines of "Minority Report" or "Iron Man," Live Science explains.

"Mixed reality is the result of blending the physical world with the digital world," according to Microsoft. "Mixed reality is the next evolution in human, computer, and environment interaction, and unlocks possibilities that before now were restricted to our imaginations."

No matter the type of technology, HTX Labs strives to "humanize training" by putting the student at the center of the learning experience, Schneider says.

For now, HTX Labs produces VR training software under the EMPACT brand name and teams up with hardware vendors to sell turnkey offerings.

Today, the company employs 12 people, all of whom are in Houston. Schneider would like to increase HTX Labs' headcount by 50 percent before the end of 2019. Also this year, Schneider hopes to raise its first round of outside capital, but only after HTX Labs secures more private and government contracts. And he doesn't rule out enlarging the company through M&A activity.

Overall, Schneider sees tremendous potential for HTX Labs, as pretty much any employer can benefit from VR training for its workers. VR training — already part of a multibillion-dollar VR market — is expected to be so pervasive, in fact, that software review website Capterra predicts one-third of small and midsize businesses in the U.S. will be piloting VR training of employees by 2021.

"VR is … being used to enhance employee training to give workers immersive 'learning by doing' opportunities they can't find in a classroom or online course," Capterra notes. "It's a revolution in an area that's historically been static and unengaging for workers."


The U.S. Air Force also uses HTX Labs' technologies to train for emergency response procedures.Courtesy of HTX Labs

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.