This year, two Houston innovation leaders will receive recognition as trailblazers at the 2024 Houston Innovation Awards. Photos courtesy

Last month, the Houston innovation community suffered the loss of two business leaders who left a significant impact on the ecosystem. In November, both individuals' careers will be recognized with Trailblazer Legacy Awards.

Every year, the Houston Innovation Awards honors a Trailblazer Award recipient for their past and future dedication to startups in Houston, and this year InnovationMap is doing approaching the award differently in light of recent events. Paul Frison, founder of the Houston Technology Center, and Scott Gale, executive director of Halliburton Labs, will receive the award posthumously. Frison died on September 5, and Gale died on September 24. The award was decided on by the 2024 judges and InnovationMap.

“I am immensely proud to honor these two remarkable individuals with the Trailblazer Award this year. It is fitting, as they represent two generations of building Houston’s ecosystem," 2023 Trailblazer Award recipient Brad Burke, managing director of the Rice Alliance and the associate vice president for industry and new ventures within Rice University's Office of Innovation, tells InnovationMap.

"Paul Frison was a pioneering leader who helped establish the Houston Technology Center and fostered the city’s tech ecosystem during the initial technology boom around the year 2000. Scott Gale, through his work at Halliburton Labs over the past five years, has been instrumental in launching Houston’s energy transition ecosystem," he continues. "Both have played pivotal roles in championing technology innovators.”

A long-time Houston businessman, Frison founded HTC in 1999 and served as its CEO and president. The organization evolved into Houston Exponential several years ago. Frison remained active within Houston innovation until 2020. Prior to HTC, he served in various executive roles at American Hospital Supply, LifeMark, ComputerCraft, and LifeCell, spending the last 50 of his years in Houston. Born in Glendale, California, he served in the Unites States Coast Guard.

"Houston's vibrant technology entrepreneurship ecosystem is the product of Paul Frison's commitment to innovation, integrity, and growth for our community," says Walter Ulrich, former president and CEO of HTC. "He is the father of Houston's tech ecosystem, CEO of one of Houston's first tech Unicorns, founder of the Houston Technology Center ranked as a top ten technology incubator by Forbes, philanthropist, veteran, and family man."

Gale helped to launch Halliburton Labs in 2020. Prior to that role, he lead global strategy initiatives for Halliburton. A Brigham Young University graduate, he received his MBA from Rice University in 2019, where he co-founded the Jones Student Association for Executives. After his graduation, he served on the the Rice Business Alumni Association Board and the Energy Advisory Board for the Rice Alliance Clean Energy Accelerator. He was also a voice actor and the co-host of two podcasts: Rice University's Owl Have You Know Podcast, which shares experiences of Rice's business community, and the Curiosity podcast, which explored optimism and curiosity with guests and co-host Brad Rossacci.

"We established the Trailblazer Award to recognize the city's innovation leaders, and Scott and Paul both more than deserve to be recognized for their contributions to Houston," Natalie Harms, editor of InnovationMap, says. "My hope is that this year's Trailblazer Legacy Awards pay tribute to their lasting impacts."

The awards will be presented at the November 14 event.


Paul Frison, the founder of the Houston Technology Center, has died. Photo via dignitymemorial.com

Houston Technology Center founder dies, leaves legacy of innovation

saying goodbye

The Houston innovation ecosystem is mourning the loss of one of its early leaders, Paul Frison, who died on September 5. He was 87.

A long-time Houston businessman, Frison founded the Houston Technology Center in 1999 and served as its CEO and president. The organization evolved into Houston Exponential several years ago. Frison remained active within Houston innovation until 2020.

“Paul Frison was a visionary and energetic leader who always presented a positive outlook on what the Houston technology entrepreneurship community could become," Brad Burke, associate vice president for industry and new ventures at Rice University's Office of Innovation, remembers. "He was one of the pioneers in the community who established the Houston Technology Center as one of the early leaders of the Houston ecosystem. I admired how he helped launch the ecosystem and created the platform for many others to build upon.”

Prior to HTC, he served in various executive roles at American Hospital Supply, LifeMark, ComputerCraft, and LifeCell, spending the last 50 of his years in Houston. Born in Glendale, California, he served in the Unites States Coast Guard.

Blair Garrou, co-founder and managing director of Mercury Fund, says Frison was his first boss and mentor in the tech and entrepreneurship sector.

“When people look back to how the Houston tech community was founded, it starts with Paul Frison," Garrou says. "Paul had run multiple companies and I was lucky to have him as CEO when I worked for him at the Houston Technology Center. He quickly became a mentor, and over time, a good friend and confidant. I have Paul to thank for launching my career in tech and venture capital.

"My favorite quote of Paul’s was, 'Do not confuse effort with results,'” Garrou continues. "Despite his results-driven work ethic – which was legendary — Paul was also deeply-rooted in family and faith, and has been a role model for me over my entire professional life.”

He is preceded in death by his wife, Barbara, and his grandson, Christian David Elders. He is survived by his daughters Maryanne Elders and Jill Cortez and their families, including grandchildren Matthew Elders, Laney Elders, Max Cortez, Jake Cortez, and Sofie Cortez.

A celebration of life will be held for Frison on September 16 at 1 pm at Second Baptist Church, with a reception following in the Deacon’s Parlor. More details are available online. In lieu of flowers, Frison's wishes were for for donations to Second Baptist Church to be made in his honor.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

​Planned UT Austin med center, anchored by MD Anderson, gets $100M gift​

med funding

The University of Texas at Austin’s planned multibillion-dollar medical center, which will include a hospital run by Houston’s University of Texas MD Anderson Cancer Center, just received a $100 million boost from a billionaire husband-and-wife duo.

Tench Coxe, a former venture capitalist who’s a major shareholder in chipmaking giant Nvidia, and Simone Coxe, co-founder and former CEO of the Blanc & Otus PR firm, contributed the $100 million—one of the largest gifts in UT history. The Coxes live in Austin.

“Great medical care changes lives,” says Simone Coxe, “and we want more people to have access to it.”

The University of Texas System announced the medical center project in 2023 and cited an estimated price tag of $2.5 billion. UT initially said the medical center would be built on the site of the Frank Erwin Center, a sports and entertainment venue on the UT Austin campus that was demolished in 2024. The 20-acre site, north of downtown and the state Capitol, is near Dell Seton Medical Center, UT Dell Medical School and UT Health Austin.

Now, UT officials are considering a bigger, still-unidentified site near the Domain mixed-use district in North Austin, although they haven’t ruled out the Erwin Center site. The Domain development is near St. David’s North Medical Center.

As originally planned, the medical center would house a cancer center built and operated by MD Anderson and a specialty hospital built and operated by UT Austin. Construction on the two hospitals is scheduled to start this year and be completed in 2030. According to a 2025 bid notice for contractors, each hospital is expected to encompass about 1.5 million square feet, meaning the medical center would span about 3 million square feet.

Features of the MD Anderson hospital will include:

  • Inpatient care
  • Outpatient clinics
  • Surgery suites
  • Radiation, chemotherapy, cell, and proton treatments
  • Diagnostic imaging
  • Clinical drug trials

UT says the new medical center will fuse the university’s academic and research capabilities with the medical and research capabilities of MD Anderson and Dell Medical School.

UT officials say priorities for spending the Coxes’ gift include:

  • Recruiting world-class medical professionals and scientists
  • Supporting construction
  • Investing in technology
  • Expanding community programs that promote healthy living and access to care

Tench says the opportunity to contribute to building an institution from the ground up helped prompt the donation. He and others say that thanks to MD Anderson’s participation, the medical center will bring world-renowned cancer care to the Austin area.

“We have a close friend who had to travel to Houston for care she should have been able to get here at home. … Supporting the vision for the UT medical center is exactly the opportunity Austin needed,” he says.

The rate of patients who leave the Austin area to seek care for serious medical issues runs as high as 25 percent, according to UT.

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.