Houston-based Saranas' technology is now being premiered in the United States. Courtesy of Saranas

A Houston company is changing the game when it comes to early bleed detection, and now the company can provide its life-saving service to the United States.

Saranas Inc., which received FDA approval for its Early Bird Bleed Monitoring System in March, announced that it is launching its device in the US. at the Transcatheter Cardiovascular Therapeutics Conference next week in San Francisco. The device is designed to detect and track bleeding complications related to endovascular procedures. These medical procedures treat problems, such as aneurysms, that affect blood vessels.

"As the first and only early bleed detection system on the market, the Early Bird is ideally positioned to play a key role in making the rapidly expanding, minimally-invasive catheter-based procedures safer by providing physicians with bleed monitoring in real-time," says Saranas president and CEO, Zaffer Syed, in a news release. "With the launch of the Early Bird, physicians will now have a standard of care to monitor the bleed status of the patient during and post procedure, receive timely notifications of actual bleeds, and potentially reduce the severity of bleeding complications and resulting costs, while protecting clinical outcomes in patients undergoing endovascular procedures."

Around 20 percent of patience suffer a bleeding complication during endovascular procedures, like transcatheter aortic valve replacement, endovascular aneurysm repair, and percutaneous hemodynamic support, and, according to a report in the Journal of the American Medical Association, these complications result in higher mortality, longer hospital stays, and higher medical bills.

In other exciting news for the company, Saranas hired Tom Lucas as vice president of sales and marketing. He has 28 years of experience in medical sales, and he is tasked with business development, marketing, sales, and more for the company.

"Tom is a critical strategic hire for Saranas as we launch our first product in the U.S.," Syed says in the release. "His expertise will be invaluable as we expand distribution of the Early Bird into additional centers of excellence."

Saranas began its clinical trials last year after raising $2.8 million. The company revealed the results of those trials earlier this year, leading to the FDA approval.

"Our first-in-human study demonstrated that clinical concordance with Early Bird detection and CT scans (primary endpoint) was near perfect, and the early discovery of bleed onset and progression during the procedure occurred in 31 percent of cases with 69 percent occurring post procedure," says Saranas Chief Medical Officer Dr. Philippe Généreux in the release. "Compared to the current paradigm of waiting for symptoms, which could take hours to develop, the Early Bird allows physicians to detect bleeding in real-time and take the necessary actions quickly to protect the outcomes of the procedure and aid recovery for the patient."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.

FAA demands investigation into SpaceX's out-of-control Starship flight

Out of this world

The Federal Aviation Administration is demanding an accident investigation into the out-of-control Starship flight by SpaceX on May 27.

Tuesday's test flight from Texas lasted longer than the previous two failed demos of the world's biggest and most powerful rocket, which ended in flames over the Atlantic. The latest spacecraft made it halfway around the world to the Indian Ocean, but not before going into a spin and breaking apart.

The FAA said Friday that no injuries or public damage were reported.

The first-stage booster — recycled from an earlier flight — also burst apart while descending over the Gulf of Mexico. But that was the result of deliberately extreme testing approved by the FAA in advance.

All wreckage from both sections of the 403-foot (123-meter) rocket came down within the designated hazard zones, according to the FAA.

The FAA will oversee SpaceX's investigation, which is required before another Starship can launch.

CEO Elon Musk said he wants to pick up the pace of Starship test flights, with the ultimate goal of launching them to Mars. NASA needs Starship as the means of landing astronauts on the moon in the next few years.

TMC med-tech company closes $2.5M series A, plans expansion

fresh funding

Insight Surgery, a United Kingdom-based startup that specializes in surgical technology, has raised $2.5 million in a series A round led by New York City-based life sciences investor Nodenza Venture Partners. The company launched its U.S. business in 2023 with the opening of a cleanroom manufacturing facility at Houston’s Texas Medical Center.

The startup says the investment comes on the heels of the U.S. Food and Drug Administration (FDA) granting clearance to the company’s surgical guides for orthopedic surgery. Insight says the fresh capital will support its U.S. expansion, including one new manufacturing facility at an East Coast hospital and another at a West Coast hospital.

Insight says the investment “will provide surgeons with rapid access to sophisticated tools that improve patient outcomes, reduce risk, and expedite recovery.”

Insight’s proprietary digital platform, EmbedMed, digitizes the surgical planning process and allows the rapid design and manufacturing of patient-specific guides for orthopedic surgery.

“Our mission is to make advanced surgical planning tools accessible and scalable across the U.S. healthcare system,” Insight CEO Henry Pinchbeck said in a news release. “This investment allows us to accelerate our plan to enable every orthopedic surgeon in the U.S. to have easy access to personalized surgical devices within surgically meaningful timelines.”

Ross Morton, managing Partner at Nodenza, says Insight’s “disruptive” technology may enable the company to become “the leader in the personalized surgery market.”

The startup recently entered a strategic partnership with Ricoh USA, a provider of information management and digital services for businesses. It also has forged partnerships with the Hospital for Special Surgery in New York City, University of Chicago Medicine, University of Florida Health and UAB Medicine in Birmingham, Alabama.