The HyVelocity Hub, representing the Gulf Coast region, will receive $1.2 billion to strengthen and further build out the region's hydrogen production. Photo via Getty Images

A Houston-area project got the green light as one of the seven regions to receive a part of the $7 billion in Bipartisan Infrastructure Law funding to advance domestic hydrogen production.

President Joe Biden and Energy Secretary Jennifer Granholm named the seven regions to receive funding in a White House statement today. The Gulf Coast's project, HyVelocity Hydrogen Hub, will receive up to $1.2 billion — the most any hub will receive, per the release.

“As I’ve stated repeatedly over the past years, we are uniquely positioned to lead a transformational clean hydrogen hub that will deliver economic growth and good jobs, including in historically underserved communities," Houston Mayor Sylvester Turner says in a news release. "HyVelocity will also help scale up national and world clean hydrogen economies, resulting in significant decarbonization gains. I’d also like to thank all the partners who came together to create HyVelocity Hub in a true spirit of public-private collaboration.”

Backed by industry partners AES Corporation, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas, Ørsted, and Sempra Infrastructure, the HyVelocity Hydrogen Hub will connect more than 1,000 miles of hydrogen pipelines, 48 hydrogen production facilities, and dozens of hydrogen end-use applications across Texas and Southwest Louisiana. The hub is planning for large-scale hydrogen production through both natural gas with carbon capture and renewables-powered electrolysis.

The project is spearheaded by GTI Energy and other organizing participants, including the University of Texas at Austin, The Center for Houston’s Future, Houston Advanced Research Center, and around 90 other supporting partners from academia, industry, government, and beyond.

“Prioritizing strong community engagement and demonstrating an innovation ecosystem, the HyVelocity Hub will improve local air quality and create equitable access to clean, reliable, affordable energy for communities across the Gulf Coast region,” says Paula A. Gant, president and CEO of GTI Energy, in a news release.

According to the White House's announcement, the hub will create 45,000 direct jobs — 35,000 in construction jobs and 10,000 permanent jobs. The other selected hubs — and the impact they are expected to have, include:

  • Tied with HyVelocity in terms of funding amount, the California Hydrogen Hub — Alliance for Renewable Clean Hydrogen Energy Systems (ARCHES) — will also receive up to $1.2 billion to create 220,000 direct jobs—130,000 in construction jobs and 90,000 permanent jobs. The project is expected to target decarbonizing public transportation, heavy duty trucking, and port operations.
  • The Midwest Alliance for Clean Hydrogen (MachH2), spanning Illinois, Indiana, and Michigan, will receive up to $1 billion. This region's efforts will be directed at optimizing hydrogen use in steel and glass production, power generation, refining, heavy-duty transportation, and sustainable aviation fuel. It's expected to create 13,600 direct jobs—12,100 in construction jobs and 1,500 permanent jobs.
  • Receiving up to $1 billion and targeting Washington, Oregon, and Montana, the Pacific Northwest Hydrogen Hub — named PNW H2— will produce clean hydrogen from renewable sources and will create over 10,000 direct jobs—8,050 in construction jobs and 350 permanent jobs.
  • The Appalachian Regional Clean Hydrogen Hub (ARCH2), which will be located in West Virginia, Ohio, and Pennsylvania, will tap into existing infrastructure to use low-cost natural gas to produce low-cost clean hydrogen and permanently and safely store the associated carbon emissions. The project, which will receive up to $925 million, will create 21,000 direct jobs—including more than 18,000 in construction and more than 3,000 permanent jobs.
  • Spanning Minnesota, North Dakota, and South Dakota, the Heartland Hydrogen Hub will receive up to $925 million and create around 3,880 direct jobs–3,067 in construction jobs and 703 permanent jobs — to decarbonize the agricultural sector’s production of fertilizer, decrease the regional cost of clean hydrogen, and advance hydrogen use in electric generation and for cold climate space heating.
  • Lastly, the Mid-Atlantic Clean Hydrogen Hub (MACH2), which will include Pennsylvania, Delaware, and New Jersey, hopes to repurposing historic oil infrastructure to develop renewable hydrogen production facilities from renewable and nuclear electricity. The hub, which will receive up to $750 million, anticipates creating 20,800 direct jobs—14,400 in construction jobs and 6,400 permanent jobs.

These seven clean hydrogen hubs are expected to catalyze more than $40 billion in private investment, per the White house, and bring the total public and private investment in hydrogen hubs to nearly $50 billion. Collectively, they aim to produce more than three million metric tons of clean hydrogen annually — which reaches nearly one third of the 2030 U.S. clean hydrogen production goal. Additionally, the hubs will eliminate 25 million metric tons of carbon dioxide emissions from end uses each year. That's roughly equivalent to annual emissions of over 5.5 million gasoline-powered cars.

“Unlocking the full potential of hydrogen—a versatile fuel that can be made from almost any energy resource in virtually every part of the country—is crucial to achieving President Biden’s goal of American industry powered by American clean energy, ensuring less volatility and more affordable clean energy options for American families and businesses,” U.S. Secretary of Energy Jennifer M. Granholm says in the release. “With this historic investment, the Biden-Harris Administration is laying the foundation for a new, American-led industry that will propel the global clean energy transition while creating high quality jobs and delivering healthier communities in every pocket of the nation.”

HyVelocity has been a vision amongst Houston energy leaders for over a year, announcing its bid for regional hydrogen hub funding last November. Another Houston-based clean energy project was recently named a semi-finalist for National Science Foundation funding.

“We are excited to get to work making HyVelocity come to life,” Brett Perlman, president and CEO of Center for Houston’s Future, says in the release. “We look forward to spurring economic growth and development, creating jobs, and reducing emissions in ways that will benefit local communities and the Gulf Coast region as a whole. HyVelocity will be a model for creating a clean hydrogen ecosystem in an inclusive and equitable manner.”

------

This article originally ran on EnergyCapital.

Intuitive Machines has officially moved into its new HQ. Photo courtesy of Intuitive Machines

Space tech startup opens new $40M HQ at Houston Spaceport

ready for takeoff

Houston aerospace company Intuitive Machines has moved into its new $40 million headquarters at the Houston Spaceport.

Intuitive Machines’ new home supports NASA’s $93 billion Artemis program, which aims to return astronauts to the moon by 2024 and eventually send humans to Mars. Eighteen astronauts are assigned to the program. Houston’s Johnson Space Center is playing a key role in Artemis.

The company’s 105,572-square-foot Lunar Production and Operations Center serves as the hub for its lunar program, including the manufacturing of lunar landers and spacecraft. The facility features manufacturing and production spaces, 3D printing areas, machine shops, R&D labs, cleanrooms, and spacecraft assembly areas, along with offices, meeting rooms, and conference rooms.

“Unique to the facility are mission control rooms to track and manage lunar missions, and a propulsion test facility to assess lunar lander engine capabilities,” Intuitive Machines says in a news release.

The propulsion test facility consists of a 3,800-square-foot reinforced concrete chamber surrounded by a 25-foot-high perimeter wall that encloses an additional 6,500-square-foot yard.

Intuitive Machines says its first mission lunar lander, Nova-C, will soon be shipped from its new facility ahead of the lander’s upcoming launch. The mission to deliver NASA and commercial payloads to the moon’s south pole marks the first U.S. attempt of a soft lunar landing since Apollo 17 in 1972.

The moon “is no longer a distant dream; it’s a destination within our grasp, and this facility is our lunar gateway — a national asset,” says Steve Altemus, co-founder, president, and CEO of Intuitive Machines.

Construction on the site began in June 2021, with the now-completed facility ready to support each of Intuitive Machines’ three NASA-awarded missions.

Intuitive Machines joins Axiom Space and Collins Aerospace as the third anchor tenant at the Houston Spaceport.

“Houston has always been a city that reaches for the stars, and with Intuitive Machines operating at the Houston Spaceport, our city is poised to shine even brighter in the cosmos,” says Houston Mayor Sylvester Turner.

In August, the publicly traded company announced it received a $20 million equity investment from an unidentified institutional investor.

UH's business school has a new program focused on artificial intelligence thanks to a partnership with Intel. Photo via uh.edu

University of Houston, Intel team up to prepare workforce for AI revolution

back to school

The University of Houston’s C.T. Bauer College of Business has teamed up with semiconductor chip manufacturer Intel Corp. to provide training in artificial intelligence.

The new artificial intelligence program features a standalone business certificate with two specialized courses; the first course launched in January. Bauer also plans to offer non-degree certificate programs in AI, such as the AI Certificate for Entrepreneurship and AI Certificate for Executive Education.

In a news release, Elizabeth McGee, chief strategy and innovation adviser at Santa Clara, California-based Intel, says the UH initiative will help bridge the AI knowledge gap. An online search indicates hundreds of AI-related jobs are open in the Houston area.

“Digital upskilling, or digital readiness, needs to be a catapult for economic prosperity for everyone and not a dividing point,” McGee says. “I commend the University of Houston for being the first higher education institution to take our award-winning curriculum and lend your expertise in entrepreneurship, your access to the broader Houston community, and supporting this digital upskilling for everyone.”

AI education has taken on a greater sense of urgency as the healthcare and energy sectors, among others, incorporate AI into their operations.

Paul Pavlou, dean of the Bauer College and Cullen Distinguished Chair Professor, says the collaboration between UH and Intel will help propel growth and innovation in Houston’s tech sector. Intel, whose only Texas location is in Austin, is a key player in the expanding AI market.

“Intel has been very generous with their resources, and with our expertise in analytics and faculty research and students’ initiative in bringing new products to life, the opportunities for this collaboration to be transformative are endless,” Pavlou says.

AI is growing at an incredibly rapid pace. According to Precedence Research, the size of the global AI market was estimated at $119.78 billion in 2022 and is expected to reach nearly $1.6 trillion by 2030.

“While some markets, sectors and individual businesses are more advanced than others, AI is still at a very early stage of development overall,” says professional services firm PwC. “From a macroeconomic point of view, there are … opportunities for emerging markets to leapfrog more developed counterparts.”

AI is viewed as both positive and negative in terms of today’s workforce.

“AI is a fast-evolving technology with great potential to make workers more productive, to make firms more efficient, and to spur innovations in new products and services. At the same time, AI can also be used to automate existing jobs and exacerbate inequality, and it can lead to discrimination against workers,” says a report published by the White House in 2022.

Houston Mayor Sylvester Turner and Houston City Council celebrated “AI Innovation and Entrepreneurship Day” at City Hall on Feb. 7. Photo via Facebook

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.