Syzygy Plasmonics has raised $23 million thanks to international support. Photos via plasmonics.tech

A Houston startup founded based off research coming out of Rice University has closed its series B funding, the company announced this week.

Founded in 2017, Syzygy Plasmonics is a chemical company developing a photocatalyst-powered hydrogen fuel cell technology that produces a cheaper source of energy that releases fewer carbon emissions. As of this week, the company has $23 million more to fund its scaling and grow its team thanks to the closing of its series B financing led by Hong Kong-based Horizons Venture. Equinor Ventures, a new investor, also joined in on the round, along with previous seed and series A investors including The Engine, GOOSE Capital, and Evok Innovations.

"With renewable electricity as an energy source, our technology is cleaner, and because of the stability and activity of our photocatalysts, we can drive dozens of possibilities, tuning reactions that produce different chemicals," says Trevor Best, Syzygy Plasmonics' co-founder and CEO, in a news release. "Our initial product will focus on eliminating emissions from hydrogen production, transforming the industrial process involved in making semiconductors, LEDs and metals. Our system will also enable industries that are consumers of hydrogen fuel cells, like fuel cell vehicles."

The hydrogen-fueled technology originated out of research done over two decades by two Rice University professors, Naomi Halas and Peter Nordlander and further developed by the company's co-founder and CTO, Suman Khatiwada. The technology has the ability to both lower costs and emissions at industrial plants. According to the release, Syzygy's first product focused on hydrogen and the technology has the potential to cut the cost of zero emission hydrogen in half, when compared to other alternatives such as electrolysis.

"There are rules in chemical engineering, and you can't break them, but we follow them in a different way," CEO Trevor Best previously told InnovationMap. "What we're doing is fundamentally different. We're using light instead of heat to drive chemical reactions."

Currently, Syzygy employs 26 people and plans to double its workforce in the next year in order to launch its first full-size, commercial-ready chemical reactors in 2022.

In August of 2019, Syzygy raised its $5.8 million series A and secured Department of Energy ARPA-E and National Science Foundation SBIR Program grants.

"The keys to unlock the potential of hydrogen energy lie within production cost reduction and safety enhancements. Syzygy uses a photocatalysis process to produce H2 on premises, therefore mitigating risks of explosion imposed by the transportation of liquid hydrogen while lowering production costs to increase overall energy efficiency. This technology will be applicable to a wide-range of use-cases, enabling a faster path toward zero-emissions," says Patrick Poon of Horizons Ventures, who is also a new board member at Syzygy.

The international fundraise also attracted interest from Norway-based Equinor's venture arm, which has operations in more than 30 countries.

"We have announced our ambition to become a net-zero energy company by 2050 and in order for society at large to meet its climate goals it will require new solutions and technologies. We are pleased to announce the investment in Syzygy as one potential contributor to help the energy industry reduce emissions as part of our effort to shape the future of energy," says Gareth Burns, head of Equinor Ventures, in the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics co. unveils new robot that can handle extreme temperatures

Hot New Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot is commercially available and certified to operate at extreme temperatures.

The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F.

The new robot has received the NEC/CEC Class I Division 2 (C1D2) certification from FM Approvals, allowing it to operate safely in hazardous locations and to perform on-stream inspections of aboveground storage tanks containing products stored at elevated temperatures.

“Our engineering team developed the SR-3HT in response to significant client demand in both the U.S. and international markets. We frequently encounter higher temperatures due to both elevated process temperatures and high ambient temperatures, especially in the hotter regions of the world, such as the Middle East," David Lamont, CEO of Square Robot, said in a news release. "The SR-3HT employs both active and passive cooling technology, greatly expanding our operating envelope. A great job done (again) by our engineers delivering world-leading technology in record time.”

The company's SR-3 submersible robot and Side Launcher received certifications earlier this year. They became commercially available in 2023, after completing initial milestone testing in partnership with ExxonMobil, according to Square Robot.

The company closed a $13 million series B round in December, which it said it would put toward international expansion in Europe and the Middle East.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

---

This article originally appeared on EnergyCapitalHTX.com.

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.