Dr. William Cohn is the chief medical officer for BiVACOR, a medical device company creating the first total artificial heart. Photo via TMC

It's hard to understate the impact Dr. William Cohn has had on cardiovascular health as a surgeon at the Texas Heart Institute or on health care innovation as the director of the Center for Device Innovation at the Texas Medical Center. However, his role as chief medical officer of BiVACOR might be his most significant contribution to health care yet.

The company's Total Artificial Heart is unlike any cardiovascular device that's existed, Cohn explains on the Houston Innovators Podcast. While most devices are used temporarily for patients awaiting a heart transplant, BiVACOR's TAH has the potential to be a permanent solution for the 200,000 patients who die of heart failure annually. Last year, only around 4,000 patients were able to receive heart transplants.

"Artificial hearts historically have had bladders that ejected and filled 144,000 times a day. They work great for temporary support, but no one is suggesting they are permanent devices," Cohn says on the show.

The difference with BiVACOR's device is it abandons the bladder approach. Cohn explains that as assist pumps evolved — something his colleague, Dr. Bud Frasier, had a huge impact on — they featured new turbine and rotor technology. Daniel Timms, BiVACOR's founder and CTO, iterated on this technology beginning when he was a postdoctoral student at Queensland University of Technology in Australia.

"BiVACOR is the first artificial heart that leverages what we learned from that whole period — it has no bladders, it has no valves. It has one moving part, and that moving part is suspended in an electromagnetic field controlled by a computer and changed thousands of times a second," Cohn says. "It will never wear out, and that's why we think it's the world's first total artificial heart."

The company is seeing momentum, celebrating its first successful human implantation last month. The device was used for eight days on a patient at Baylor St. Luke’s Medical Center before the patient received a heart transplant.

Cohn says that BiVACOR has plans to use the TAH as "bridge-to-transplant" device in several other surgeries and expects to get FDA approval for that purpose in the next three to four years before working toward clearance for total artificial heart transplants.

Cohn has worked to support medical device startups at CDI at TMC for the seven years it has existed — first under Johnson and Johnson and then under TMC when it took the program over. He describes the center and its location as the ideal place for developing the future of health care, with Houston rising up to compete with regions known for medical device success — both coasts and Minnesota.

"Being in the shadow of the largest medical center on the planet — 106,000 employees show up there every 24 hours," Cohn says, "if you want to innovate, this is the place to do it."

Revisiting a conversation with Dr. Joseph Rogers, president and CEO of the Texas Heart Institute, on the Houston Innovators Podcast. Photo via texasheart.org

Play it back: How this Houstonian is leading heart health innovation

HOUSTON INNOVATORS PODCAST EPISODE 246

Heart health innovation is at a major moment in history — and Houston is at the center of it.

Last summer, Dr. Joseph Rogers, president and CEO of the Houston-based Texas Heart Institute, joined the Houston Innovators Podcast to share how he came to be at the helm of THI, as well as the incredible technologies the institute is working on to address heart failure, a global epidemic affecting at least 26 million people worldwide, 6.2 million adults in the U.S.

This month, one of THI’s technologies reached a major milestone. BiVACOR, a Houston company successfully implanted the company's first Total Artificial Heart in a human. The device was implanted in the patient on July 9. Eight days later, a donor heart became available and was transplanted into the patient, removing the TAH, establishing the device as a successful bridge-to-heart-transplant solution for patients, THI reported.

In addition to this breakthrough in health tech, THI is focused on addressing Cardiometabolic Syndrome at a new conference on Friday, August 23, in Houston. The full-day symposium will take place in collaboration with Arianna Huffington, the founder and CEO of Thrive Global. Dr. Rogers is co-directing the program with Dr. Stephanie Coulter, medical director for THI Center for Women’s Heart & Vascular Health.


In the episode, Rogers explains why he's bullish on Houston and THI leading heart health innovation alongside other health care organizations — nonprofits, universities, local government — to collaborate in ways never been done before. And THI is dedicated to this mission.

"We should act as a convener," Rogers says. "Houston is the place to do this.

"The reason I think this is such an important community to address this problem is it's the most diverse city in the United States. And I've never lived anywhere or heard of another city that I was so convinced believed they could do anything they set their minds to. It's about making the community aware of the problem and a potential solution — and then working on trying to solve it," he continues. "But I think all of the pieces are here to show the world how to do this at a community level."

Emerson Perin of the Texas Heart Institute, recently published the largest clinical trial of cell therapy for patients with chronic heart failure to-date included 580 patients at 52 sites throughout North America. Photo via texasheart.org

Houston health care leader on a mission to innovate an end to heart failure

cardiology cured

Emerson Perin’s end goal isn’t to treat heart failure. The medical director of The Texas Heart Institute says that he has his sights set firmly on curing the malady altogether. And, with the power of innovation and a strong team, the Houston-based cardiologist has a good chance of meeting his objective.

Perin first came to THI for fellowship training in 1988, following his residency in Miami and medical school in his birthplace of Brazil.

“This is a very special place,” the physician and researcher, whose titles also include director for THI’s Center for Clinical Research and vice president for medical affairs, tells InnovationMap. “It has a worldwide-reaching reputation. I’ve always liked research and this is a great place in terms of innovation and practicing high-level cardiology.”

For decades, Perin has followed in THI founder Denton Cooley’s footsteps with world-changing research. In 2001, the founding medical director of THI’s Stem Cell Center was the first person to inject stem cells into a failing human heart. It led to a trial of 17 patients that year.

“A couple of the patients did remarkably well — more than you could ever expect. These guys who couldn’t’ walk across the room pretty much were jogging on the beach. That gave me the initial insight that this works,” Perin recalls.

What exactly is heart failure? The term refers to the condition of a heart that can’t pump enough blood to sustainably power the body through oxygenation of the tissues from blood flow. It may sound like a death sentence, but with appropriate care, it can usually be managed with medicines and if worsening occurs, devices and, ultimately, heart transplantation.

And Perin is proving that there’s a lot of life ahead for heart failure patients. Earlier this year, he published another groundbreaking clinical trial, DREAM-HF. The largest clinical trial of cell therapy for patients with chronic heart failure to-date included 580 patients at 52 sites throughout North America.

With the goal of getting a new cell therapy approved for heart failure, the primary endpoint was to prove that the therapy could prevent recurrent hospitalizations.

“It was a total negative,” says Perin. That’s because the cells don’t have a decongestant effect such as the medicines currently used to treat heart failure.

But that doesn’t mean that the trial was a failure. Quite the opposite. That’s because Perin and his team proved something else: The trial was able to prove that there was significant improvement in patients with inflammation. After those patients were injected with mesenchymal precursor cells (MPC), they showed a 70-percent reduction in heart attacks and strokes. Cardiovascular deaths also decreased.

These are blockbuster numbers, and big news for patients dealing with heart failure. What it means is that the cells addressed a different aspect of heart failure that until now had been left untreated which was the inflammation — how heart failure starts and what keeps it going.

So what’s next? Going to the FDA.

“They said, ‘We can’t approve it with one trial, but we’ll approve it with two,’” says Perin.

This time, his primary endpoint will be tailored to suit the positive outcome he knows he’ll be able achieve. This next round will begin in 2024.

Once the FDA approves a new catheter system for injecting the heart with stem cells and genes, the team will proceed with new studies. Gene therapy will be another frontier for Perin — and patients with heart failure.

“I think the combination of cells and genes is even more powerful,” he says. “That will help save lives in a completely new way and do away with heart failure.”

Perin's work is just one piece of the puzzle, and Dr. Joseph Rogers, who was appointed president and CEO of THI in 2021, is leading the organization's initiative in several ways. THI, recently buoyed by a $32 million donation from a patient — the largest charitable donation in its history — is exploring several innovative therapeutics, devices, and treatments.

THI recently received a two-year, $1.14 million grant from The National Heart, Lung, and Blood Institute to develop a novel, first-in-class drug to treat the cardiovascular disease that arises from atherosclerosis. Another THI innovator, Camila Hochman-Mendez — along with her research team — is studying the effects of regenerative medicine on hearts.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston climatetech company plans groundbreaking sustainable aviation fuel facility

coming soon

Houston-based Syzygy Plasmonics announced plans to develop what it calls the world's first electrified facility to convert biogas into sustainable aviation fuel (SAF).

The facility, known as NovaSAF 1, will be located in Durazno, Uruguay. It is expected to produce over 350,000 gallons of SAF annually, which would be considered “a breakthrough in cost-effective, scalable clean fuel,” according to the company.

"This is more than just a SAF plant; it's a new model for biogas economics," Trevor Best, CEO of Syzygy Plasmonics, said in a news release. "We're unlocking a global asset class of underutilized biogas sites and turning them into high-value clean fuel hubs without pipelines, costly gas separation, or subsidy dependence.”

The project is backed by long-term feedstock and site agreements with one of Uruguay's largest dairy and agri-energy operations, Estancias del Lago, while the permitting and equipment sourcing are ongoing alongside front-end engineering work led by Kent.

Syzygy says the project will result in a 50 percent higher SAF yield than conventional thermal biogas reforming pathways and will utilize both methane and CO2 naturally found in biogas as feedstocks, eliminating the need for expensive CO2 separation technologies and infrastructure. Additionally, the modular facility will be designed for easy replication in biogas-rich regions.

The new facility is expected to begin commercial operations in Q1 2027 and produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel. The company says that once fully commercialized the facility will produce SAF at Jet-A fuel cost parity.

“We believe NovaSAF represents one of the few viable pathways to producing SAF at jet parity and successfully decarbonizing air travel,” Best added in the release.

---

This article originally ran on EnergyCapital.

Houston company ranks No. 13 worldwide on Forbes Global 2000 list

World's Biggest Companies

More than 60 Texas-based companies appear on Forbes’ 2025 list of the world’s 2,000 biggest publicly traded companies, and nearly half come from Houston.

Among Texas companies whose stock is publicly traded, Spring-based ExxonMobil is the highest ranked at No. 13 globally.

Rounding out Texas’ top five are Houston-based Chevron (No. 30), Dallas-based AT&T (No. 35), Austin-based Oracle (No. 66), and Austin-based Tesla (No. 69).

Ranking first in the world is New York City-based J.P. Morgan Chase.

Forbes compiled this year’s Global 2000 list using data from FactSet Research to analyze the biggest public companies based on four metrics: sales, profit, assets, and market value.

“The annual Forbes Global 2000 list features the companies shaping today’s global markets and moving them worldwide,” said Hank Tucker, a staff writer at Forbes. “This year’s list showcases how despite a complex geopolitical landscape, globalization has continued to fuel decades of economic growth, with the world’s largest companies more than tripling in size across multiple measures in the past 20 years.”

The U.S. topped the list with 612 companies, followed by China with 317 and Japan with 180.

Here are the rest of the Texas-based companies in the Forbes 2000, grouped by the location of their headquarters and followed by their global ranking.

Houston area

  • ConocoPhillips (No. 105)
  • Phillips 66 (No. 276)
  • SLB (No. 296)
  • EOG Resources (No. 297)
  • Occidental Petroleum (No. 302)
  • Waste Management (No. 351)
  • Kinder Morgan (No. 370)
  • Hewlett Packard Enterprise (No. 379)
  • Baker Hughes (No. 403)
  • Cheniere Energy (No. 415)
  • Corebridge Financial (No. 424)
  • Sysco (No. 448)
  • Halliburton (No. 641)
  • Targa Resources (No. 651)
  • NRG Energy (No. 667)
  • Quanta Services (No. 722)
  • CenterPoint Energy (No. 783)
  • Coterra Energy (No. 1,138)
  • Crown Castle International (No. 1,146)
  • Westlake Corp. (No. 1,199)
  • APA Corp. (No. 1,467)
  • Comfort Systems USA (No. 1,629)
  • Group 1 Automotive (No. 1,653)
  • Talen Energy (No. 1,854)
  • Prosperity Bancshares (No. 1,855)
  • NOV (No. 1,980)

Austin area

  • Dell Technologies (No. 183)
  • Flex (No. 887)
  • Digital Realty Trust (No. 1,063)
  • CrowdStrike (No. 1,490)

Dallas-Fort Worth

  • Caterpillar (No. 118)
  • Charles Schwab (No. 124)
  • McKesson (No. 195)
  • D.R. Horton (No. 365)
  • Texas Instruments (No. 374)
  • Vistra Energy (No. 437)
  • CBRE (No. 582)
  • Kimberly-Clark (No. 639)
  • Tenet Healthcare (No. 691)
  • American Airlines (No. 834)
  • Southwest Airlines (No. 844)
  • Atmos Energy (No. 1,025)
  • Builders FirstSource (No. 1,039)
  • Copart (No. 1,062)
  • Fluor (No. 1,153)
  • Jacobs Solutions (1,232)
  • Globe Life (1,285)
  • AECOM (No. 1,371)
  • Lennox International (No. 1,486)
  • HF Sinclair (No. 1,532)
  • Invitation Homes (No. 1,603)
  • Celanese (No. 1,845)
  • Tyler Technologies (No. 1,942)

San Antonio

  • Valero Energy (No. 397)
  • Cullen/Frost Bankers (No. 1,560)

Midland

  • Diamondback Energy (No. 471)
  • Permian Resources (No. 1,762)
---

A version of this article originally appeared on CultureMap.com.

Texas plugs in among states at highest risk for summer power outages in 2025

hot, hot, hot

Warning: Houston could be in for an especially uncomfortable summer.

A new study from solar energy company Wolf River Electric puts Texas at No. 2 among the states most at risk for power outages this summer. Michigan tops the list.

Wolf River Electric analyzed the number of large-scale outages that left more than 5,000 utility customers, including homes, stores and schools, without summertime electricity from 2019 to 2023. During that period, Texas experienced 7,164 summertime power outages.

Despite Michigan being hit with more summertime outages, Texas led the list of states with the most hours of summertime power outages — an annual average of 35,440. That works out to 1,477 days. “This means power cuts in Texas tend to last longer, making summer especially tough for residents and businesses,” the study says.

The Electric Reliability Council of Texas (ERCOT), which operates the electric grid serving 90 percent of the state, predicts its system will set a monthly record for peak demand this August — 85,759 megawatts. That would exceed the current record of 85,508 megawatts, dating back to August 2023.

In 2025, natural gas will account for 37.7 percent of ERCOT’s summertime power-generating capacity, followed by wind (22.9 percent) and solar (19 percent), according to an ERCOT fact sheet.

This year, ERCOT expects four months to surpass peak demand of 80,000 megawatts:

  • June 2025 — 82,243 megawatts
  • July 2025 — 84,103 megawatts
  • August 2025 — 85,759 megawatts
  • September 2025 — 80,773 megawatts

One megawatt is enough power to serve about 250 residential customers amid peak demand, according to ERCOT. Using that figure, the projected peak of 85,759 megawatts in August would supply enough power to serve more than 21.4 million residential customers in Texas.

Data centers, artificial intelligence and population growth are driving up power demand in Texas, straining the ERCOT grid. In January, ERCOT laid out a nearly $33 billion plan to boost power transmission capabilities in its service area.