Balancing renewable energy growth and grid resilience requires a multifaceted approach. Photo via Getty Images

The global energy sector is on an exhilarating trajectory, teeming with promising technologies and unprecedented opportunities for a sustainable future. Yet, we find ourselves grappling with the challenges of reliability and affordability. As both a researcher in the field of power electronics and a consumer with bills to pay, I find myself experiencing mixed feelings.

As a researcher, I am thrilled by the progress we have achieved, particularly in energy conversion. The exponential growth of renewable energy technologies in Texas and beyond, including wind turbines and solar PV systems, is cause for celebration. These innovations, coupled with supportive policies, have facilitated widespread deployment and the potential to significantly reduce greenhouse gas emissions, combat climate change, and create a brighter future for our children.

While renewable energy resources can play a crucial role in maintaining the supply-demand balance of the grid, as they did by performing very well during the recent 2023 Texas heat wave, their intermittent and unpredictable nature can also pose a significant challenge to the power system. Unlike traditional power plants that operate continuously, wind turbines and solar PV systems rely on weather conditions for optimal performance. Fluctuations in wind speed, cloud cover, and sunlight intensity can lead to imbalances between energy supply and demand. This imbalance will worsen as the anticipated influx of electric vehicles and their charging needs come into play.

The volatility of renewables contributes to price fluctuations in the electricity market, which not only affects consumers but also raises concerns about grid resilience during extreme weather events. My electricity bill increased by over 20 percent compared to last year, partly caused by inflation, but mainly due to higher operational costs in the Texas electricity market.

Texas witnessed firsthand the consequences of a not-so-resilient grid through the severe power outages experienced during the "Polar Vortex" in February 2021. These outages not only disrupted lives but also disproportionately impacted vulnerable populations. During that time, my wife was expecting our second child. Enduring two nights in our frigid home without electricity or a fireplace was an ordeal that we navigated relatively unscathed. But it made me think of those less fortunate. These circumstances underscore the importance of establishing a robust, dependable and affordable electrical power system.

Balancing renewable energy growth and grid resilience requires a multifaceted approach:

  1. Investment in Infrastructure and Storage: It is crucial to strengthen the grid and ensure a reliable power supply. Upgrading transmission and distribution systems, integrating advanced monitoring and control technologies, and enhancing grid interconnections are essential. The Texas Legislature established the Powering Texas Forward Act, also known as Senate Bill 2627, a taxpayer-funded loan program, to encourage investment. While excluding certain renewable energy facilities and electric energy storage, it recognizes the need for a reliable grid. Hydrogen fuel cell generation facilities could be a potential solution, providing clean and stable energy while remaining eligible for the loan program. Additionally, implementing large-scale energy storage systems utilizing batteries and hydrogen storage technologies can mitigate renewable energy volatility by storing excess energy until needed. The Texas energy industry's push for these advances is a significant step in the right direction.
  2. Diversification of Energy Sources: While renewables play a crucial role in decarbonization, a mix of renewable sources, natural gas, and other low-carbon resources is necessary for the foreseeable future. Implementing carbon capture, utilization, and storage (CCUS) technologies across industries can mitigate associated climate impacts. The failure of Senate Bill 624, which would have had significant repercussions for wind and solar facilities, indicates that Texas legislators are genuinely concerned about clean, alternative sources of energy. However, a lot more needs to be done, including coordinated actions between federal, state, and international governments, to address the urgent issue of climate change. Texas can leverage its hydrocarbon/energy expertise to produce economical green and blue hydrogen, advanced fuel cells and hydrogen-based internal combustion engine technologies, enabling a smoother energy transition in terms of usage and jobs.
  3. Educating the General Public: It is critical to help people understand the necessity of modernizing our energy infrastructure; the benefits and opportunities it brings and the transformations we can expect. Institutions like the University of Houston play a crucial role in advancing clean energy technologies and educating the future energy workforce. The establishment of the Texas University Fund (TUF), with a budget of over $3 billion, through a constitutional amendment in November 2023, will be a pivotal step toward this goal.

When addressing the energy transformation and grid resilience dilemma, the real-life impact on human beings must be of prime importance. Our leaders should focus on a balanced approach considering grid infrastructure investment, diversification of energy sources, energy storage solutions, and public education. By adopting this multifaceted strategy, we can ensure a reliable, resilient, and affordable energy future.

------

Harish Krishnamoorthy is an assistant professor of electrical and computer engineering and associate director of the Power Electronics, Microgrids and Subsea Electric Systems Center (PEMSEC) at the University of Houston.

Harish Krishnamoorthy is one of four fellows recognized by the program — and the first from UH to receive the honor. Photo via UH.edu

Houston researcher tapped for prestigious fellowship for offshore safety innovation

big win

A University of Houston professor has been selected by a national organization to “contribute to the understanding, management and reduction of systemic risk in offshore energy activities.”

The Gulf Research Program of the National Academies of Sciences, Engineering, and Medicine announced that Harish Krishnamoorthy, assistant professor of electrical and computer engineering at the University of Houston, is one of four selected early-career research fellows in the Offshore Energy Safety track. Krishnamoorthy is the first researcher from UH selected for the recognition.

“I am happy and honored to be the first one, but hopefully there will be a lot more in the coming years,” Krishnamoorthy says in a UH news release.

The award, which isn't granted based on a specific project, includes a $76,000 grant, mentor support, and access to a network of current and past cohorts.

Created in 2013, the program is an independent, science-based program founded as part of legal settlements with the companies involved in the 2010 Deepwater Horizon disaster. Its goal is "to enhance offshore energy system safety and protect human health and the environment by catalyzing advances in science, practice and capacity, generating long-term benefits for the Gulf of Mexico region and the nation," the release reads.

“These exceptional individuals are working hard to pursue new research, technical capabilities, and approaches that address some of the greatest challenges facing the Gulf and Alaska regions today,” says Karena Mary Mothershed, senior program manager for the Gulf Research Program’s Board on Gulf Education and Engagement. “We are incredibly excited to announce these new Early-Career Research Fellows, and to continue supporting them as they make lasting impacts.”

Krishnamoorthy, who also serves as associate director of the Power Electronics, Microgrids and Subsea Electric Systems Center at UH, has expertise is in power electronics, power converters, and offshore technologies. His research interests include high-density power conversion for grid interface of energy systems, machine learning-based methods for improvement in quality and reliability of power electronics, advanced electronics and control for mission-critical applications.

According to Krishnamoorthy, there are around 1,500 offshore rigs — with a large amount located North Sea and the Gulf of Mexico. There's a need to improve existing systems, according to Krishnamoorthy, and this process of evolving the grid comes with safety risks and challenges.

“When there are so many electronics involved, safety and reliability are going to be very critical,” Krishnamoorthy says in he release. “I have been looking at safety aspects a lot in my research as well as how to connect subsea oil and gas systems with offshore renewable systems.”

In 2022, Krishnamoorthy was recognized as an OTC Emerging Leader at the Offshore Technology Conference for his contributions to offshore safety and workforce development in offshore, as well as reducing the carbon emissions.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston university students earn top honors at global energy-poverty competition

Winner, winner

A student-led team from the University of Houston and Texas A&M University took home top prizes at last month's Switch Energy Alliance Case Competition.

Competing virtually against 145 teams from 34 countries, the students, known as The Dream Team, won third place for their plan to address energy poverty in Egypt and Turkey. They were awarded $5,000 in prize money.

The competition challenges student teams to solve real-world energy problems to "drive progress towards a sustainable and equitable energy future," according to the Switch competition's website.

“The Switch competition tackles major issues that we often don’t think about on a daily basis in the United States, so it is a really interesting and tough challenge to solve,” Sarah Grace Kimberly, a senior finance major at UH and member of the team, said in a statement from the university

Kimberly was joined by Pranjal Sheth, a fellow senior finance major at UH, and Nathan Hazlett, a finance graduate student at TAMU with a bachelor’s degree in petroleum engineering.

The Dream Team developed a 10-year plan to address Egypt and Turkey's energy poverty that would create 200,000 jobs, reduce energy costs and improve energy access in rural areas. Its major components included:

  • Developing rooftop and utility-scale solar farms and solar canopies over irrigation canals
  • Expanding wind power capacity by taking advantage of high wind speeds in the Gulf of Suez and Western Desert
  • Deploying cost-efficient technologies along the Nile for rural electrification

“People in the United States should be extremely thankful for the infrastructure and systems that allow us to thrive with power, food and water,” Sheth said in the statement. “Texas went through Winter Storm Uri in 2021—people were without electricity for weeks, and lives were lost. It still comes up in conversations, but certain regions of the world, developing nations, live that experience almost every day. We need to make that a larger part of the conversation and work to help them.”

Team Quwa, a team of four students from the University of Texas at Austin, took home second place and $7,000 in prize money.

“This journey was both intellectually enriching and personally fulfilling,” Mohamed Awad, a PhD candidate at the Hildebrand Department of Petroleum and Geosystems Engineering, said in a statement from UT. “Through the case competition, we had an opportunity to contribute meaningful ideas to address a critical global issue.”

Team Energy Nexus from India earned the top prize and took home $10,000, according to a release from Switch.

Switch Energy Alliance is an Austin-based non-profit that's focused on energy education. The Switch competition began in 2020. Teams of three to four students create a presentation and 15-minute video. The top five teams present their case studies live and answer questions before a panel of judges.

More than 3,200 students from 55 countries have competed over the years. Click here to watch the 2024 final round.

------

This article originally ran on EnergyCapital.

Houston ranked among top 10 destinations for movers in 2024, report says

On the Move

Houston remains popular as one of the top 10 metropolitan areas for people on the move in 2024, according to U-Haul's Top U.S. Growth Metros and Cities report.

Houston ranked No. 9 in 2024, which is a big jump for the metro after the suburb of Conroe ranked No. 16 in 2023.

The two Texas metros that outranked Houston were Austin (No. 5) and Dallas-Fort Worth, which climbed through the ranks to take the No. 1 spot this year after previously ranking No. 9 in 2023.

College Station, the popular college town, is another Texas perennial: It's No. 6 for the second consecutive year on an accompanying U-Haul list of top growth cities (distinguished as being located outside the top metros).

Alas, Texas was unseated as the top state for movers, according to U-Haul's Top Growth States Report. The Lone Star State landed in the No. 2 spot, pushed aside by South Carolina, which topped the list for the first time.

"Migration to the Southeast and Southwest continues as families gauge their cost of living, job opportunities, quality of life and other factors that go into relocating to a new state," said John "J.T." Taylor, U-Haul International president. "Out-migration remains prevalent for a number of markets across the Northeast, Midwest and West Coast — and particularly California."

The annual migration report is based on how many one-way transactions were made by DIY movers using a U-Haul truck, trailer, or U-Box moving container across the U.S. and Canada.

While U-Haul's numbers don't directly correlate to population or economic growth, it is an interesting look at the performance of the top American cities and states that are attracting newcomers.

The full list of top 10 growth metros for 2024 are:

  • No. 1 – Dallas-Fort Worth, Texas
  • No. 2 – Charlotte, North Carolina
  • No. 3 – Phoenix, Arizona
  • No. 4 – Lakeland, Florida
  • No. 5 – Austin, Texas
  • No. 6 – Nashville, Tennessee
  • No. 7 – Raleigh, North Carolina
  • No. 8 – Palm Bay, Florida
  • No. 9 – Houston, Texas
  • No. 10 – Greenville, South Carolina
---

This story originally appeared on our sister site, CultureMap.com.

Being prepared: Has the Texas grid been adequately winterized?

Being Prepared

Houstonians may feel anxious as the city and state experience freezing temperatures this winter. Every year since 2021’s Winter Storm Uri, Texans wonder whether the grid will keep them safe in the face of another. The record-breaking cold temperatures of Uri exposed a crucial vulnerability in the state’s power and water infrastructure.

According to ERCOT’s 6-day supply and demand forecast from January 3, 2025, it expected plenty of generation capacity to meet the needs of Texans during the most recent period of colder weather. So why did the grid fail so spectacularly in 2021?

  1. Demand for electricity surged as millions of people tried to heat their homes.
  2. ERCOT was simply not prepared despite previous winter storms of similar intensity to offer lessons in similarities.
  3. The state was highly dependent on un-winterized natural gas power plants for electricity.
  4. The Texas grid is isolated from other states.
  5. Failures of communication and coordination between ERCOT, state officials, utility companies, gas suppliers, electricity providers, and power plants contributed to the devastating outages.

The domino effect resulted in power outages for millions of Texans, the deaths of hundreds of Texans, billions of dollars in damages, with some households going nearly a week without heat, power, and water. This catastrophe highlighted the need for swift and sweeping upgrades and protections against future extreme weather events.

Texas State Legislature Responds

Texas lawmakers proactively introduced and passed legislation aimed at upgrading the state’s power infrastructure and preventing repeated failures within weeks of the storm. Senate Bill 3 (SB3) measures included:

  • Requirements to weatherize gas supply chain and pipeline facilities that sell electric energy within ERCOT.
  • The ability to impose penalties of up to $1 million for violation of these requirements.
  • Requirement for ERCOT to procure new power sources to ensure grid reliability during extreme heat and extreme cold.
  • Designation of specific natural gas facilities that are critical for power delivery during energy emergencies.
  • Development of an alert system that is to be activated when supply may not be able to meet demand.
  • Requirement for the Public Utility Commission of Texas, or PUCT, to establish an emergency wholesale electricity pricing program.

Texas Weatherization by Natural Gas Plants

In a Railroad Commission of Texas document published May 2024 and geared to gas supply chain and pipeline facilities, dozens of solutions were outlined with weatherization best practices and approaches in an effort to prevent another climate-affected crisis from severe winter weather.

Some solutions included:

  • Installation of insulation on critical components of a facility.
  • Construction of permanent or temporary windbreaks, housing, or barriers around critical equipment to reduce the impact of windchill.
  • Guidelines for the removal of ice and snow from critical equipment.
  • Instructions for the use of temporary heat systems on localized freezing problems like heating blankets, catalytic heaters, or fuel line heaters.

According to Daniel Cohan, professor of environmental engineering at Rice University, power plants across Texas have installed hundreds of millions of dollars worth of weatherization upgrades to their facilities. In ERCOT’s January 2022 winterization report, it stated that 321 out of 324 electricity generation units and transmission facilities fully passed the new regulations.

Is the Texas Grid Adequately Winterized?

Utilities, power generators, ERCOT, and the PUCT have all made changes to their operations and facilities since 2021 to be better prepared for extreme winter weather. Are these changes enough? Has the Texas grid officially been winterized?

This season, as winter weather tests Texans, residents may potentially experience localized outages. When tree branches cannot support the weight of the ice, they can snap and knock out power lines to neighborhoods across the state. In the instance of a downed power line, we must rely on regional utilities to act quickly to restore power.

The specific legislation enacted by the Texas state government in response to the 2021 disaster addressed to the relevant parties ensures that they have done their part to winterize the Texas grid.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.