At a recent virtual event, experts discussed the hard tech wave that's coming for Houston. Photo via Getty Images

The past couple decades of innovation has been largely defined by software — and its been a bit of a boom. However, lately it's become evident that it's time for hardware innovation to shine.

At the HX Venture Fund's recent conference, Venture Houston, a few hard tech innovators joined a virtual discussion on the future of hardware — and what Houston's role will be in it.

When it comes to advancing technology for humankind, Adam Sharkawy, founder and managing partner of Boston-based Material Impact, a HXVF portfolio fund, says it's time to expand the walls of what is possible.

"Unlike other types of technologies that may facilitate the possible, deep and hard technologies expand what is in the realm of the possible," he says on the panel. "Software has caught up, and we need a new deep tech wave."

And the future looks promising, as Sharkawy says he's seen hard tech grow over the past 5 to 7 years by about 22 percent. Nic Radford, president and CEO of Houston Mechatronics agrees it's time to shift the focus to hard tech.

"The Information Age was the ubiquitous manipulation of the virtual world, but now we need to uncover the ubiquitous manipulation of the physical world is," he says. "And we need to make those investments toward that."

But investments seem, at least in the recent past, harder to come by for hard tech startups compared to software companies with quick exit strategies.

"Deep tech is traditionally thought of as requiring deep pockets," Sharkawy says.

Radford says there was over $167 billion in capital deployments last year, and only 8 percent of that went to industrial or hard tech. Hardware, he says, is tougher to evaluate, they take longer to exit and are tougher to scale.

"To me that's what makes them a gold mine," Radford adds. "It's an underserved market for sure, and that's because we're tougher to evaluate."

Something to note though, he continues, is that hard tech is going to have a bigger societal impact, but maybe it's not the one with the biggest return.

"I think corporates have an special role to play in the inevitability of hard tech," Radford says. "They aren't completely motivated by financial returns."

Gaurab Chakrabarti, CEO and co-founder of Solugen, says he's had a different experience with raising funds. The Houston entrepreneur has raised over $100 million and is planning to go public soon. He's achieved this by attracting investment from the top VC funds in the country. If you zero in on these powerful funds, you can see they are dedicating more and more funds to this arena. And, he predicts, other VC funds will follow.

"This is a unique time for hardware companies to go and and raise from the top venture capitals of the world," Chakrabarti says.

The city of Houston, with its firm footing in the energy and space industries has an important role to play in this new era.

"The Houston area has all the key ingredients to be an innovation hub — no question," Sharkawy says.

The panelists identified Houston's fine education institutions, major corporations present, access to talent, and more as indicators for success. But the innovation here needs to continue to develop intentionally.

"I'd love to see Houston not try to copycat into a general tech hub," Sharkawy says. "Instead it would be great for Houston leverage its unique position as a leader in energy and space and help its constituents of more traditional energy — big corporates, for example — transform into the new frontier."

Vanessa Wyche, deputy director at NASA's Johnson Space Center, says she's seen the space industry take off as the field becomes more and more commercialized. And locally there's a lot of potential for Houston and all the resources and infrastructure that already exists.

"It's about taking what you're good at, and making it better," she says.

Each of the panelists expressed confidence in this evolving wave of hard tech — and are keeping a close watch on the major players as well as the city of Houston.

"We're going to have to get into the world and do something," Radford says. "That next wave of innovation is specifically interacting with our environment, in my opinion."

The journey from ideation to creation, and then manufacturing can be difficult, but rewarding. Photo courtesy of OKGlobal

These are the risks and rewards of prototyping, according to Houston expert

Guest column

We live in a digital world. Music, movies, and even family photos have become primarily digital. Computer software offers us a range of comfort and efficiency and has become part of our daily routine. So, why would anyone want to build a career around physical product development?

Simple, almost every software product or next big thing relies on a well-executed physical product development project. Apps need a place to run, games need a console to be played, and pictures need a camera to be taken.

Physical product development means dreaming of something that does not yet exist and solves an existing problem. It means taking an intangible idea and making it into a physical item that people can see, touch, and use.

The journey from ideation to creation, and then manufacturing can be difficult, but rewarding. By understanding the process, you'll find that not only is your inspiration worth pursuing, but it may be one of the most fulfilling things you will ever do.

From inspiration to perspiration

Every product development project begins with a vision, the identification of a problem and a solution for that problem. That initial spark of inspiration is what drives the entire project.

Look for a problem that hasn't been solved and solve that problem, or try the reverse. Think of a product idea, and then work backwards to find the need. Regardless, one cannot be successful without the other.

Projects require this problem, or need, because it embodies the product's target market. A product idea without a well-defined need has no reason to exist, and if it did, it would be downright perplexing.

Once you identify your need and idea, start your research.

Test the validity of your idea. How much of a market exists for your problem-solving miracle? Send out surveys, look at various markets, conduct data analyses, and generally, do everything in your power to ensure that your product should be made.

Then, start making something.

From concept to reality

The design, prototype and manufacturing stages are what bring your inspiration closer to reality. Turning it into a concrete product means letting go, and that can be scary.

Initial concept designs can be done in a variety of different ways. Detailed sketches and blueprints could be drawn up, or CAD drawings can be created. This concept design can help you explain your idea to others, including partners and investors. What works even better, though, are prototypes.

A prototype is a preliminary model of your product that can help you determine the feasibility of different aspects of your design. You can make a functional prototype, which acts as a proof-of-concept for your idea, or you may create aesthetic prototypes that will test the look and feel of your product.

Once you nail down the ideal appearance and physicality of your product, you will need to combine the two disciplines as seamlessly as possible. This performance prototype will effectively demo your final product.

Finally, you can prepare your product for production. Designing for manufacturability (DFM) means ensuring that your product can be made efficiently and cost-effectively. DFM allows you to mistake-proof your product by choosing the best manufacturing materials and methods, while keeping in mind the appropriate regulations for your desired market.

From nothing into something

The product development process often changes. Trends like crowdsourcing and innovative fast-to-market solutions constantly upend the process and make it new again. Some automakers, for example, want to innovate the design process using existing customer data — similar to how companies like Microsoft and Apple create iterative versions of their software product development projects.

Getting your product to market can be tough, but certain approaches can ease the burden. Create a simpler product. Fail fast and fail cheap with lean development, meaning limit your risk to maximize your return. Also, never underestimate the importance of customer feedback and intellectual property protection throughout the process.

With that said, invest in yourself and your inspiration, and you will avoid that nagging what if-mentality that drives regret. Great reward always requires risk, but there are also ways to invest smarter. Use available resources and give your dream the best chance for success.

------

Onega Ulanova is the founder of OKGlobal.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.

Houston chemist lands $2M NIH grant for cancer treatment research

future of cellular health

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories.

Xiao will use the five-year grant to develop noncanonical amino acids (ncAAs) with diverse properties to help build proteins, according to a statement from Rice. He and his team will then use the ncAAs to explore the vivo sensors for enzymes involved in posttranslational modifications (PTMs), which play a role in the development of cancers and neurological disorders. Additionally, the team will look to develop a way to detect these enzymes in living organisms in real-time rather than in a lab.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement.

According to Rice, these developments could have major implications for the way diseases are treated, specifically for epigenetic inhibitors that are used to treat cancer.

Xiao helped lead the charge to launch Rice's new Synthesis X Center this spring. The center, which was born out of informal meetings between Xio's lab and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine, aims to improve cancer outcomes by turning fundamental research into clinical applications.

They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”