At a recent virtual event, experts discussed the hard tech wave that's coming for Houston. Photo via Getty Images

The past couple decades of innovation has been largely defined by software — and its been a bit of a boom. However, lately it's become evident that it's time for hardware innovation to shine.

At the HX Venture Fund's recent conference, Venture Houston, a few hard tech innovators joined a virtual discussion on the future of hardware — and what Houston's role will be in it.

When it comes to advancing technology for humankind, Adam Sharkawy, founder and managing partner of Boston-based Material Impact, a HXVF portfolio fund, says it's time to expand the walls of what is possible.

"Unlike other types of technologies that may facilitate the possible, deep and hard technologies expand what is in the realm of the possible," he says on the panel. "Software has caught up, and we need a new deep tech wave."

And the future looks promising, as Sharkawy says he's seen hard tech grow over the past 5 to 7 years by about 22 percent. Nic Radford, president and CEO of Houston Mechatronics agrees it's time to shift the focus to hard tech.

"The Information Age was the ubiquitous manipulation of the virtual world, but now we need to uncover the ubiquitous manipulation of the physical world is," he says. "And we need to make those investments toward that."

But investments seem, at least in the recent past, harder to come by for hard tech startups compared to software companies with quick exit strategies.

"Deep tech is traditionally thought of as requiring deep pockets," Sharkawy says.

Radford says there was over $167 billion in capital deployments last year, and only 8 percent of that went to industrial or hard tech. Hardware, he says, is tougher to evaluate, they take longer to exit and are tougher to scale.

"To me that's what makes them a gold mine," Radford adds. "It's an underserved market for sure, and that's because we're tougher to evaluate."

Something to note though, he continues, is that hard tech is going to have a bigger societal impact, but maybe it's not the one with the biggest return.

"I think corporates have an special role to play in the inevitability of hard tech," Radford says. "They aren't completely motivated by financial returns."

Gaurab Chakrabarti, CEO and co-founder of Solugen, says he's had a different experience with raising funds. The Houston entrepreneur has raised over $100 million and is planning to go public soon. He's achieved this by attracting investment from the top VC funds in the country. If you zero in on these powerful funds, you can see they are dedicating more and more funds to this arena. And, he predicts, other VC funds will follow.

"This is a unique time for hardware companies to go and and raise from the top venture capitals of the world," Chakrabarti says.

The city of Houston, with its firm footing in the energy and space industries has an important role to play in this new era.

"The Houston area has all the key ingredients to be an innovation hub — no question," Sharkawy says.

The panelists identified Houston's fine education institutions, major corporations present, access to talent, and more as indicators for success. But the innovation here needs to continue to develop intentionally.

"I'd love to see Houston not try to copycat into a general tech hub," Sharkawy says. "Instead it would be great for Houston leverage its unique position as a leader in energy and space and help its constituents of more traditional energy — big corporates, for example — transform into the new frontier."

Vanessa Wyche, deputy director at NASA's Johnson Space Center, says she's seen the space industry take off as the field becomes more and more commercialized. And locally there's a lot of potential for Houston and all the resources and infrastructure that already exists.

"It's about taking what you're good at, and making it better," she says.

Each of the panelists expressed confidence in this evolving wave of hard tech — and are keeping a close watch on the major players as well as the city of Houston.

"We're going to have to get into the world and do something," Radford says. "That next wave of innovation is specifically interacting with our environment, in my opinion."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.

FAA demands investigation into SpaceX's out-of-control Starship flight

Out of this world

The Federal Aviation Administration is demanding an accident investigation into the out-of-control Starship flight by SpaceX on May 27.

Tuesday's test flight from Texas lasted longer than the previous two failed demos of the world's biggest and most powerful rocket, which ended in flames over the Atlantic. The latest spacecraft made it halfway around the world to the Indian Ocean, but not before going into a spin and breaking apart.

The FAA said Friday that no injuries or public damage were reported.

The first-stage booster — recycled from an earlier flight — also burst apart while descending over the Gulf of Mexico. But that was the result of deliberately extreme testing approved by the FAA in advance.

All wreckage from both sections of the 403-foot (123-meter) rocket came down within the designated hazard zones, according to the FAA.

The FAA will oversee SpaceX's investigation, which is required before another Starship can launch.

CEO Elon Musk said he wants to pick up the pace of Starship test flights, with the ultimate goal of launching them to Mars. NASA needs Starship as the means of landing astronauts on the moon in the next few years.

TMC med-tech company closes $2.5M series A, plans expansion

fresh funding

Insight Surgery, a United Kingdom-based startup that specializes in surgical technology, has raised $2.5 million in a series A round led by New York City-based life sciences investor Nodenza Venture Partners. The company launched its U.S. business in 2023 with the opening of a cleanroom manufacturing facility at Houston’s Texas Medical Center.

The startup says the investment comes on the heels of the U.S. Food and Drug Administration (FDA) granting clearance to the company’s surgical guides for orthopedic surgery. Insight says the fresh capital will support its U.S. expansion, including one new manufacturing facility at an East Coast hospital and another at a West Coast hospital.

Insight says the investment “will provide surgeons with rapid access to sophisticated tools that improve patient outcomes, reduce risk, and expedite recovery.”

Insight’s proprietary digital platform, EmbedMed, digitizes the surgical planning process and allows the rapid design and manufacturing of patient-specific guides for orthopedic surgery.

“Our mission is to make advanced surgical planning tools accessible and scalable across the U.S. healthcare system,” Insight CEO Henry Pinchbeck said in a news release. “This investment allows us to accelerate our plan to enable every orthopedic surgeon in the U.S. to have easy access to personalized surgical devices within surgically meaningful timelines.”

Ross Morton, managing Partner at Nodenza, says Insight’s “disruptive” technology may enable the company to become “the leader in the personalized surgery market.”

The startup recently entered a strategic partnership with Ricoh USA, a provider of information management and digital services for businesses. It also has forged partnerships with the Hospital for Special Surgery in New York City, University of Chicago Medicine, University of Florida Health and UAB Medicine in Birmingham, Alabama.