Haleh Ardebili (left) has been appointed as assistant vice president of Entrepreneurship and Startup Ecosystem, and Michael Harold as assistant vice president for Intellectual Property and Industrial Engagements at the University of Houston. Photo via UH

Two professors have assumed new leadership roles in the University of Houston’s Office of Technology, Transfer, and Innovation.

Haleh Ardebili, the Kamel Salama Endowed Professor of Mechanical Engineering, has been named assistant vice president of entrepreneurship and startup ecosystem. Michael Harold, Cullen Engineering Professor of Chemical and Biomolecular Engineering, has been named assistant vice president for intellectual property and industrial engagements.

Ardebili and Harold “are both tested leaders in their respective areas —they are already contributing to our rich academic environment with their knowledge, expertise and commitment to innovation,” says Ramanan Krishnamoorti, vice president for energy and innovation at UH, in a statement. “Having them helm our growing team will help UH continue its culture of innovation and contribution to society.”

In her new role, Ardebili will oversee entrepreneurship and startup efforts at UH. She will direct the startup and entrepreneurship staff within the Office of Technology, Transfer, and Innovation (OTTI).

Ardebili, who joined the university in 2004, previously was director of the Cullen College of Engineering’s Innovation and Entrepreneurship Initiative.

In his new role, Harold will lead the university’s technology transfer activities. He will direct the OTTI licensing and IP management staff.

Harold worked at DuPont in various technical and managerial positions between 1993 and 2000. He joined UH in 2000 as chair of the Department of Chemical Engineering. He served as chair until 2008 and again from 2013 to 2020.

“Both positions will play integral roles in increasing faculty engagement, facilitating innovations from research labs to market, and enhancing collaboration with internal and external stakeholders. These appointments underscore UH’s commitment to driving innovation, economic development, and industry partnerships,” the university says in the release.

This week's roundup of Houston innovators includes Don Frieden of P97, Haleh Ardebili of the University of Houston, and Babur Ozden of Aquanta Vision. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from fintech to energy — recently making headlines in Houston innovation.


Don Frieden, president and CEO of P97

Don Frieden, president and CEO of P97, shares how he plans to streamline day-to-day transactions on the Houston Innovators Podcast. Photo courtesy of P97

Before Don Frieden started his company, gas stations hadn't innovated their payment technology since 1997. He knew that needed to change.

P97, founded in 2012, exists to use innovative technologies to simplify and energize daily journeys, Frieden explains on the Houston Innovators Podcast.

"We think about daily journeys from the time we leave home in the morning and when we get back at the end of the day — whether it's tolling, parking, buying fuel, fast food restaurants, it's all a part of your daily journeys, and our goal is to make things a little bit simpler each day," Frieden says on the show. Read more.

Haleh Ardebili, professor of Mechanical Engineering at University of Houston

Haleh Ardebili is the the Bill D. Cook Professor of Mechanical Engineering at UH. Photo courtesy

A new prototype out of the University of Houston feels more like science fiction than reality.

"As a big science fiction fan, I could envision a ‘science-fiction-esque future’ where our clothes are smart, interactive and powered,” according to a statement Haleh Ardebili, who last month published a paper on a new stretchable fabric-based lithium-ion battery in the Extreme Mechanics Letters.

“It seemed a natural next step to create and integrate stretchable batteries with stretchable devices and clothing," she said. "Imagine folding or bending or stretching your laptop or phone in your pocket. Or using interactive sensors embedded in our clothes that monitor our health.”

The battery uses conductive silver fabric as a platform and current collector, which stretches (or mechanically deforms) while allowing movement for electrons and ions. Traditional lithium batteries are quite rigid and use a liquid electrolyte, which are flammable and have potential risks of exploding. Read more.

Babur Ozden, founder of Aquanta Vision

Babur Ozden is the founder of Aquanta Vision. Photo via LinkedIn

Aquanta Vision Technologies, a Houston-based climate-tech startup, was selected to participate in the scale-up phase of Chevron Studio, a Houston program that matches entrepreneurs with technologies to turn them into businesses. Aquanta's computer vision software completely automates the identification of methane in optical gas imaging, or OGI. The technology originated from Colorado State University and CSU STRATA Technology Transfer.

Babur Ozden, a tech startup entrepreneur, along with Marcus Martinez, the lead inventor and Dan Zimmerle, co-inventor and director of METEC at CSU Energy Institute, came up with the technology to identify the presence and motion of methane in live video streams. Currently, this process of identifying methane requires a human camera operator to interpret the images. This can often be unreliable in the collection of emissions data.

Aquanta’s technology requires no human intervention and is universally compatible with all OGI cameras. Currently, only about 10 percent of the 20.5 million surveys done worldwide use this type of technology as it is extremely expensive to produce. Ozden said he hopes Aquanta will change that model.

“What we are doing — we are democratizing this feature, this capability, independent of the camera make and model,” Ozden says. Read more.

University of Houston Professor Haleh Ardebili (right) and Navid Khiabani, a graduate research assistant, are creating bendable batteries. Photo via UH.edu

Houston researchers develop new battery prototype to impact wearable technology

flexible innovation

A new breakthrough prototype out of the University of Houston was inspired by science fiction.

"As a big science fiction fan, I could envision a ‘science-fiction-esque future’ where our clothes are smart, interactive and powered,” according to a statement Haleh Ardebili, who last month published a paper on a new stretchable fabric-based lithium-ion battery in the Extreme Mechanics Letters.

“It seemed a natural next step to create and integrate stretchable batteries with stretchable devices and clothing," she said. "Imagine folding or bending or stretching your laptop or phone in your pocket. Or using interactive sensors embedded in our clothes that monitor our health.”

The battery uses conductive silver fabric as a platform and current collector, which stretches (or mechanically deforms) while allowing movement for electrons and ions. Traditional lithium batteries are quite rigid and use a liquid electrolyte, which are flammable and have potential risks of exploding.

The technology is only a prototype now, but Ardebili, who's the Bill D. Cook Professor of Mechanical Engineering at UH, and the paper's first author Bahar Moradi Ghadi, a former doctoral student, think the battery could have many applications, including in smart space suits, consumer electronics and implantable biosensors.

While it's just a prototype now, the technology has a lot of potential in the wearable tech space. Photo via UH.edu

The team's focus now is to ensure the battery is "as safe as possible" before it becomes available on the market.

“Commercial viability depends on many factors such as scaling up the manufacturability of the product, cost and other factors,” Ardebili said. “We are working toward those considerations and goals as we optimize and enhance our stretchable battery.”

Ardebili first conceptualized the product several years ago and has since earned several key wards and grants to support the design, including a five-year National Science Foundation CAREER Award in 2013, a New Investigator Award from the NASA Texas Space Center Grant Consortium in 2014 and an award from the US Army Research Lab in 2017.

A number of Houston-based organizations are working to create innovative batteries.

Earlier this summer, TexPower EV Technologies Inc. opened a 6,000-square-foot laboratory and three-ton-per-year pilot production line in Northwest Houston to help the University of Texas-born company to further commercialize its cobalt-free lithium-ion cathode, which can be used in electric vehicles.

Another Houston-based company Zeta Energy has also developed proprietary sulfur-based cathodes and lithium metal anodes that have shown to have higher capacity and density and better safety profiles than lithium sulfur batteries. The company landed a $4 million grant from the U.S. Department of Energy's ARPA-E Electric Vehicles for American Low-Carbon Living, or EVs4ALL, program, in January.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.

International Space Station welcomes astronauts from successful Axiom Mission 4

Out In Space

The first astronauts in more than 40 years from India, Poland and Hungary arrived at the International Space Station on Thursday, ferried there by SpaceX on a private flight.

The crew of four will spend two weeks at the orbiting lab, performing dozens of experiments. They launched Wednesday from NASA’s Kennedy Space Center.

America’s most experienced astronaut, Peggy Whitson, is the commander of the visiting crew. She works for Axiom Space, the Houston company that arranged the chartered flight.

Besides Whitson, the crew includes India’s Shubhanshu Shukla, a pilot in the Indian Air Force; Hungary’s Tibor Kapu, a mechanical engineer; and Poland’s Slawosz Uznanski-Wisniewski, a radiation expert and one of the European Space Agency’s project astronauts on temporary flight duty.

No one has ever visited the International Space Station from those countries before. The time anyone rocketed into orbit from those countries was in the late 1970s and 1980s, traveling with the Soviets.

“It’s an honor to have you join our outpost of international cooperation and exploration," NASA's Mission Control radioed from Houston minutes after the linkup high above the North Atlantic.

The new arrivals shared hugs and handshakes with the space station's seven full-time residents, celebrating with drink pouches sipped through straws. Six nations were represented: four from the U.S., three from Russia and one each from Japan, India, Poland and Hungary.

"It’s so great to be here finally. It was a long quarantine," Whitson said, referring to the crew's extra-long isolation before liftoff to stay healthy.

They went into quarantine on May 25, stuck in it as their launch kept getting delayed. The latest postponement was for space station leak monitoring, NASA wanted to make sure everything was safe following repairs to a longtime leak on the Russian side of the outpost.

It's the fourth Axiom-sponsored flight to the space station since 2022. The company is one of several that are developing their own space stations due to launch in the coming years. NASA plans to abandon the International Space Station in 2030 after more than three decades of operation, and is encouraging private ventures to replace it.

Screen-free hiking app developed in Houston earns 'Best of the Best' award

Peak Prize

An AI-powered, screen-free hiking system developed by Varshini Chouthri, a recent industrial design graduate from the University of Houston, has received Red Dot’s “Best of the Best” award, which recognizes the top innovative designs around the world.

Known as NOMAD, the system aims to help users stay in the moment while still utilizing technology. It will go on to compete for the Red Dot Luminary Award, the highest recognition given at the international event.

“NOMAD was truly a passion project, inspired by years of hiking growing up, where the outdoors became a place of peace, challenge, and reflection,” Chouthri said in a news release.

“I wanted to design something supporting those kinds of experiences by helping hikers feel more grounded and confident while staying present in nature. It was a way to give back to the moments that made me fall in love with the outdoors in the first place.”

The app “reimagines” outdoor exploration by removing the dependence on screens by using adaptive AI, contextual sensing, and an optional, wearable companion device. It employs a circular learning model that enables hikers to receive real-time guidance, safety alerts, personalized trip planning, hands-free navigation and more through a natural interface, according to UH.

NOMAD was developed at the Hines College of Architecture and Design’s PXD LAB. In 2023, Lunet, developed by David Edquilang at Hines College, received the “Best of the Best” recognition and went on to win the Red Dot Luminary Award.

The PXD LAB offers a platform to expand concepts into system-level designs that address real-world challenges, according to UH.

“Varshini’s work on NOMAD exemplifies the future-focused, systems-driven thinking we promote in the Advanced UX Design curriculum,” Min Kang, director of PXD LAB, added in the release. “NOMAD goes beyond being just a product; it reimagines how technology can enhance outdoor exploration without disrupting the experience.”

In addition to the Red Dot honors, NOMAD has already earned distinction from the FIT Sport Design Awards and was a finalist for the International Design Excellence Awards (IDEA) presented by the Industrial Designers Society of America.