Haleh Ardebili (left) has been appointed as assistant vice president of Entrepreneurship and Startup Ecosystem, and Michael Harold as assistant vice president for Intellectual Property and Industrial Engagements at the University of Houston. Photo via UH

Two professors have assumed new leadership roles in the University of Houston’s Office of Technology, Transfer, and Innovation.

Haleh Ardebili, the Kamel Salama Endowed Professor of Mechanical Engineering, has been named assistant vice president of entrepreneurship and startup ecosystem. Michael Harold, Cullen Engineering Professor of Chemical and Biomolecular Engineering, has been named assistant vice president for intellectual property and industrial engagements.

Ardebili and Harold “are both tested leaders in their respective areas —they are already contributing to our rich academic environment with their knowledge, expertise and commitment to innovation,” says Ramanan Krishnamoorti, vice president for energy and innovation at UH, in a statement. “Having them helm our growing team will help UH continue its culture of innovation and contribution to society.”

In her new role, Ardebili will oversee entrepreneurship and startup efforts at UH. She will direct the startup and entrepreneurship staff within the Office of Technology, Transfer, and Innovation (OTTI).

Ardebili, who joined the university in 2004, previously was director of the Cullen College of Engineering’s Innovation and Entrepreneurship Initiative.

In his new role, Harold will lead the university’s technology transfer activities. He will direct the OTTI licensing and IP management staff.

Harold worked at DuPont in various technical and managerial positions between 1993 and 2000. He joined UH in 2000 as chair of the Department of Chemical Engineering. He served as chair until 2008 and again from 2013 to 2020.

“Both positions will play integral roles in increasing faculty engagement, facilitating innovations from research labs to market, and enhancing collaboration with internal and external stakeholders. These appointments underscore UH’s commitment to driving innovation, economic development, and industry partnerships,” the university says in the release.

This week's roundup of Houston innovators includes Don Frieden of P97, Haleh Ardebili of the University of Houston, and Babur Ozden of Aquanta Vision. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from fintech to energy — recently making headlines in Houston innovation.


Don Frieden, president and CEO of P97

Don Frieden, president and CEO of P97, shares how he plans to streamline day-to-day transactions on the Houston Innovators Podcast. Photo courtesy of P97

Before Don Frieden started his company, gas stations hadn't innovated their payment technology since 1997. He knew that needed to change.

P97, founded in 2012, exists to use innovative technologies to simplify and energize daily journeys, Frieden explains on the Houston Innovators Podcast.

"We think about daily journeys from the time we leave home in the morning and when we get back at the end of the day — whether it's tolling, parking, buying fuel, fast food restaurants, it's all a part of your daily journeys, and our goal is to make things a little bit simpler each day," Frieden says on the show. Read more.

Haleh Ardebili, professor of Mechanical Engineering at University of Houston

Haleh Ardebili is the the Bill D. Cook Professor of Mechanical Engineering at UH. Photo courtesy

A new prototype out of the University of Houston feels more like science fiction than reality.

"As a big science fiction fan, I could envision a ‘science-fiction-esque future’ where our clothes are smart, interactive and powered,” according to a statement Haleh Ardebili, who last month published a paper on a new stretchable fabric-based lithium-ion battery in the Extreme Mechanics Letters.

“It seemed a natural next step to create and integrate stretchable batteries with stretchable devices and clothing," she said. "Imagine folding or bending or stretching your laptop or phone in your pocket. Or using interactive sensors embedded in our clothes that monitor our health.”

The battery uses conductive silver fabric as a platform and current collector, which stretches (or mechanically deforms) while allowing movement for electrons and ions. Traditional lithium batteries are quite rigid and use a liquid electrolyte, which are flammable and have potential risks of exploding. Read more.

Babur Ozden, founder of Aquanta Vision

Babur Ozden is the founder of Aquanta Vision. Photo via LinkedIn

Aquanta Vision Technologies, a Houston-based climate-tech startup, was selected to participate in the scale-up phase of Chevron Studio, a Houston program that matches entrepreneurs with technologies to turn them into businesses. Aquanta's computer vision software completely automates the identification of methane in optical gas imaging, or OGI. The technology originated from Colorado State University and CSU STRATA Technology Transfer.

Babur Ozden, a tech startup entrepreneur, along with Marcus Martinez, the lead inventor and Dan Zimmerle, co-inventor and director of METEC at CSU Energy Institute, came up with the technology to identify the presence and motion of methane in live video streams. Currently, this process of identifying methane requires a human camera operator to interpret the images. This can often be unreliable in the collection of emissions data.

Aquanta’s technology requires no human intervention and is universally compatible with all OGI cameras. Currently, only about 10 percent of the 20.5 million surveys done worldwide use this type of technology as it is extremely expensive to produce. Ozden said he hopes Aquanta will change that model.

“What we are doing — we are democratizing this feature, this capability, independent of the camera make and model,” Ozden says. Read more.

University of Houston Professor Haleh Ardebili (right) and Navid Khiabani, a graduate research assistant, are creating bendable batteries. Photo via UH.edu

Houston researchers develop new battery prototype to impact wearable technology

flexible innovation

A new breakthrough prototype out of the University of Houston was inspired by science fiction.

"As a big science fiction fan, I could envision a ‘science-fiction-esque future’ where our clothes are smart, interactive and powered,” according to a statement Haleh Ardebili, who last month published a paper on a new stretchable fabric-based lithium-ion battery in the Extreme Mechanics Letters.

“It seemed a natural next step to create and integrate stretchable batteries with stretchable devices and clothing," she said. "Imagine folding or bending or stretching your laptop or phone in your pocket. Or using interactive sensors embedded in our clothes that monitor our health.”

The battery uses conductive silver fabric as a platform and current collector, which stretches (or mechanically deforms) while allowing movement for electrons and ions. Traditional lithium batteries are quite rigid and use a liquid electrolyte, which are flammable and have potential risks of exploding.

The technology is only a prototype now, but Ardebili, who's the Bill D. Cook Professor of Mechanical Engineering at UH, and the paper's first author Bahar Moradi Ghadi, a former doctoral student, think the battery could have many applications, including in smart space suits, consumer electronics and implantable biosensors.

While it's just a prototype now, the technology has a lot of potential in the wearable tech space. Photo via UH.edu

The team's focus now is to ensure the battery is "as safe as possible" before it becomes available on the market.

“Commercial viability depends on many factors such as scaling up the manufacturability of the product, cost and other factors,” Ardebili said. “We are working toward those considerations and goals as we optimize and enhance our stretchable battery.”

Ardebili first conceptualized the product several years ago and has since earned several key wards and grants to support the design, including a five-year National Science Foundation CAREER Award in 2013, a New Investigator Award from the NASA Texas Space Center Grant Consortium in 2014 and an award from the US Army Research Lab in 2017.

A number of Houston-based organizations are working to create innovative batteries.

Earlier this summer, TexPower EV Technologies Inc. opened a 6,000-square-foot laboratory and three-ton-per-year pilot production line in Northwest Houston to help the University of Texas-born company to further commercialize its cobalt-free lithium-ion cathode, which can be used in electric vehicles.

Another Houston-based company Zeta Energy has also developed proprietary sulfur-based cathodes and lithium metal anodes that have shown to have higher capacity and density and better safety profiles than lithium sulfur batteries. The company landed a $4 million grant from the U.S. Department of Energy's ARPA-E Electric Vehicles for American Low-Carbon Living, or EVs4ALL, program, in January.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston schools shine on annual ranking of top institutions for 2025

best in class

Several Houston elementary and middle schools are at the top of the class when it comes to educating and preparing the next generation for a successful life and career, according to U.S. News & World Report's just-released list of 2025 Elementary and Middle Schools Rankings.

One such school – T.H. Rogers School in Houston ISD – is the No. 8 best middle school in Texas for 2025.

U.S. News ranked over 79,000 public schools on the state and district level using data from the U.S. Department of Education. Schools were analyzed based on their students' proficiencies in mathematics and reading/language arts on state assessments, and tie-breakers were decided based on student-teacher ratios.

Texas' best middle schools for 2025

Three Houston middle schools achieved spots among the top 10 best Texas middle schools for 2025, according to U.S. News.

T.H. Rogers School has a total enrollment of 1,063 students, with 87 percent of the student population scoring "at or above the proficient level" in mathematics, and 90 percent proficiency in reading. The school has a student-teacher ratio of 17:1, with 62 full-time teachers.

T.H. Rogers School also topped the district-wide list as the No. 1 best middle school in HISD.

Houston Gateway Academy - Coral Campus also ranked among the statewide top 10, coming in at No. 9 with a total enrollment of 914 students. U.S. News says 82 percent of HGA students are proficient in math, and 80 percent are proficient in reading.

"Houston Gateway Academy - Coral Campus did better in math and better in reading in this metric compared with students across the state," U.S. News said in the school's profile. "In Texas, 51 percent of students tested at or above the proficient level for reading, and 41 percent tested at or above that level for math."

Right behind HGA to round out the top 10 best Texas middle schools is Houston ISD's Briarmeadow Charter School. This middle school has 600 students, 69 percent of which are proficient in math and 74 percent are proficient reading.

Briarmeadow's student-teacher ratio is 16:1, which is better than the district-wide student-teacher ratio, and it employs 38 full-time teachers.

U.S. News also ranked Briarmeadow as the second best middle school in Houston ISD.

Six additional Houston-area schools ranked among the top 25 best middle schools in Texas, including:

  • No. 18 – Cornerstone Academy, Spring Branch ISD
  • No. 19 – Mandarin Immersion Magnet School, Houston ISD
  • No. 21 – Smith Middle School, Cypress-Fairbanks ISD
  • No. 22 – Seven Lakes Junior High, Katy ISD
  • No. 23 – Houston Gateway Academy
  • No. 25 – Beckendorff Junior High, Katy ISD

The best elementary schools in Texas

Jesus A. Kawas Elementary school in Laredo was crowned the No. 1 elementary school in Texas for 2025, while two Houston-area schools made it into the top 10.Tomball ISD's Creekside Forest Elementary in The Woodlands is the No. 7 best elementary school statewide, boasting 656 students, 42 full-time teachers, and one full-time counselor. Students at this school, which U.S. News designates is situated in a "fringe rural setting," scored 90 percent efficiency in math and 94 percent efficiency in reading.Following one spot behind Creekside Forest in the statewide ranking is Sugar Land's Commonwealth Elementary School in Fort Bend ISD, coming in at No. 8. Commonwealth has a student population of 954 with 55 full-time teachers, and two full-time counselors. The school's student-teacher ratio is 17:1, and 90 percent of students are proficient in math, and 94 percent in reading.U.S. News says student success at Commonwealth is significantly higher than the rest of Fort Bend ISD."In Fort Bend Independent School District, 59 percent of students tested at or above the proficient level for reading, and 47 percent tested at or above that level for math," U.S. News said in Commonwealth's profile. "Commonwealth Elementary [also] did better in math and better in reading in this metric compared with students across the state."Other Houston-area schools that were ranked among the 25 best in Texas are:
  • No. 13 – Bess Campbell Elementary, Sugar Land, Lamar CISD
  • No. 20 – West University Elementary, Houston ISD
  • No. 23 – T.H. Rogers School, Houston ISD
  • No. 25 – Griffin Elementary, Katy ISD

"The 2025 Best Elementary and Middle Schools rankings offer parents a way to evaluate how schools are providing a high-quality education and preparing students for future success," said LaMont Jones, Ed.D., the managing editor for Education at U.S. News. "The data empowers families and communities to advocate for their children’s education. Research continues to indicate that how students perform academically at these early grade levels is a big factor in their success in high school and beyond."

------

This article originally ran on CultureMap.

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.