Texas A&M University is planning a three-building project to bring parking, housing, retail, and more to the Texas Medical Center. Photo courtesy of Texas A&M University System

Texas A&M University has announced a new three-building project in the Texas Medical Center that will bring a renovated space for its Engineering Medicine program, student housing, parking, retail, and more.

The $546 million complex will be funded in part by a public-private partnership, according to a news release from the university. The project includes one 18-story building to be purchased and renovated for $145 million, and an additional $401 million will go toward constructing two new buildings.

"The Board of Regents of the Texas A&M University System recognized an opportunity in Houston to help Texans and contribute more to the global medical community," says Elaine Mendoza, chairman of the Board of Regents of the Texas A&M University System, in the news release. "We are eager and fortunate to further enhance the world's greatest medical center through this endeavor."

The first of the three buildings to debut will be the EnMed renovation project at 1020 Holcombe Blvd. This project, which had previously been announced, is expected to deliver by this summer and should be monumental for the already successful program, says Bob Harvey, president and CEO of the Greater Houston Partnership, in a statement.

"Texas A&M's EnMed program fits right into what we are doing in Houston," Harvey says. "Our city has long been recognized as a destination for world-class health care and cutting-edge research, thanks to the incredible institutions in the Texas Medical Center. Houston is also becoming known as an attractive location for both mature and emerging life science and biotech companies. We are, indeed, becoming the 'third coast' for life sciences."

A&M TMCThe first of the three buildings is expected to be complete this summer. Photo courtesy of Texas A&M University System

The two new construction buildings will be paid for through public-private partnerships. The student housing building, a 19-story building planned to have 572 units with 704 beds in a 365,000 square-foot space, will be completed by June 2022, according to the release. The building will also include a 3,444-spot parking garage. Students from A&M campuses will get priority housing, but students at other institutions will also be allowed spots if available.

"We saw a need for student housing and medical offices in Houston. Plus, our EnMed students needed the facilities to create the latest medical devices," says Greg Hartman, a vice chancellor at Texas A&M University System and interim senior vice president of the Texas A&M Health Science Center, in a news release. "So, we began the process of expanding the Texas A&M footprint in Houston and I believe the work done by Aggies in Houston will be life-changing for a lot of people."

The third component of the plans includes a 587,000-square-foot, 30-floor Integrated Medical Plaza — another public-private partnership — and it has a June 2023 expected completion. Thirteen of the stories will be parking, and 72,000 square feet of space will be for retail use, while 8,700 square feet will be green space.

According to the release, the developer for the two new construction projects is Houston-based Medistar Corp., which is run by CEO Monzer Hourani. New York-basedAmerican Triple I Partners is on the financing team and was founded by Henry Cisneros, a Texas A&M alumnus.

Representatives from both the school and the city see the potential impact of the complex for medical innovations.

"Last year, Houston had its best year ever in terms of attracting venture capital to the region," Harvey says in his statement on the news. "This program and this facility will provide one more reason for major VCs to give Houston's innovative companies a look – and for talented students, researchers, and entrepreneurs to make Houston their home."

Dr. M Katherine Banks, who serves the university of vice chancellor of engineering and national laboratories at the Texas A&M System, notes in the release how the EnMed program has set up its students for breakthrough medical device innovation.

"I expect to see transformative ideas generated by Texas A&M's broadened presence in Houston," says Dr. Banks in the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.