Is the venture capital model broken? Are lower middle-of-the-country startup valuations a benefit or a hindrance? And what will the impact of the coronavirus be on startup investing? Getty Images

Last week's Houston Tech Rodeo celebrated Houston's development as an innovation ecosystem. One major component of the Bayou City's innovation growth is the amount of venture capital activity happening in Houston.

At a panel on Monday, InnovationMap hosted a discussion between three local investors about whether or not the VC model is broke, if Houston is too far behind the coasts, and even the effect of coronavirus on investment.

If you missed the event, here are some overheards from the panel.

“We weren’t sure whether [Houston] would be the best place or the easiest place to raise money in, but it’s been incredibly welcoming."

— Leslie Goldman, general partner at The Artemis Fund. The female-founded, female-focused fund launched last year and has made two investments so far — with three more to announce in the next few weeks.

“We have a lot of experience and expertise, and a lot of money and deep pockets. But how do we make sure we are taking advantage of everything going on in Houston outside of just investing in other funds?”

— Samantha Lewis, director of Goose, explains that Goose's model is a network of high net worth investors who share deal flow and diligence duties. The organization invests $10 million annually.

“We have a much more operator and business fundamental mindset. When we look at companies at Goose, we ask, ‘what’s the path to profitability?” — not just what the growth rate is.”

— Lewis says, adding that Houston has a different psychology of success than coastal innovation ecosystems, and that's apparent in her investors at Goose.

“As an entrepreneur in Houston you have to understand one thing, and that one thing is that companies in the middle of the country generally get a discount to companies on the coast."

— Blair Garrou, managing director at Mercury Fund says on the discrepencies between valuations of Houston companies versus coastal companies. Garrou explains that, "companies in the middle of the country grow at lower rates than their coastal counterparts not because of their company but because of the amount of capital that you put to work." Coastal VCs want to go all in on the startups with technology that's going to disrupt and take over an entire market.

“I think the question now is can Houston get caught up in the somewhat irrational exuberance so that you as entrepreneurs don’t have to get diluted as much in your investment. My thought is probably not, if I’m being honest.”

Garrou says of this big-money, all-in approach to venture capital you see on the coasts.

“When you talk about all-female-founded companies, the average valuation is $12 million, and all-male-founded companies, $25.5 million is the average. That’s a female discount.”

— Goldman says, acknowledging that while Houston companies are discounted compared to the coasts, companies with all female founders are also discounted despite making up 17 percent of exits last year.

“VCs have raised larger, and larger funds. With more funds, they have to deploy more money. A lot of them are competing with each other and that drives up valuations.”

— Goldman says, adding that she's heard the VC model being referred to as "broken" on the coasts, and it all comes down to valuations and growing VC funds with too much money.

“Whether or not coronavirus becomes the epidemic that everyone things it will be, what’s happening is it’s correcting the market.”

— Garrou says, comparing the pandemic to the 2008 recession. "I think we have an opportunity. If you look at every single downturn in the market, the greatest companies have come from those downturns," he adds.

“So many people are interested in Houston because they do believe Houston has great deals at more reasonable valuations. It should be really good for founders — it’s just a matter of not comparing yourself to what the coastal companies are getting.”

— Garrou says, adding that what's missing is a sophisticated angel investment foundation. While organizations like the Houston Angel Network and Goose exist, Houston is too big for just what exists now.

“I think one of the important things to do as we are growing the ecosystem is remember that we are not going to be a copy and paste model. We need to do it in our own way.”

— Lewis says about Houston's innovation ecosystem. "What we need to think about and embrace is different models of deploying capital," she says citing Goose as an example. "We need to get creative about that."

GOOSE has invested in a logistics automation startup that has just emerged from stealth-mode operations. Photo courtesy of Outrider

Houston investor group backs growing logistics automation startup emerging from stealth

Money moves

A Golden, Colorado-based logistics technology startup has emerged from stealth-mode operation aft two years of development to collect its recent $53 million investment that a Houston investor group contributed to.

Houston-based GOOSE has announced its participation in Outrider's recent raise, which included both a seed and series A round. The startup has created an autonomous yard operations tool for logistics purposes. The company also received investment from the likes of NEA, 8VC, Koch Disruptive Technologies, Fraser McCombs Capital, Prologis, Inc., Schematic Ventures, Loup Ventures, and more, according to a news release.

The goal of distribution yards is to keep semi-trailers full of freight moving quickly in the space between the warehouse doors and public roads. However, many of the processes that make up yard operations are manual, inefficient, and hazardous.

The current situation in logistics hubs is not optimized, and yard operations are ineffective and even hazardous.

"Logistics yards offer a confined, private-property environment and a set of discrete, repetitive tasks that make the ideal use case for autonomous technology," says Andrew Smith, founder and CEO of Outrider, in the release. "But today's yards are also complex, often chaotic settings, with lots of work that's performed manually. This is why an overarching systems approach – with an autonomous truck at its center – is key to automating every major operation in the yard."

Outrider's technology can automate repetitive and manual tasks, like moving trailers around, hitching and unhitching them, connecting and disconnecting trailer brake lines, and monitoring trailer locations, per the release.

"Outrider represents the type of company we at GOOSE want to fund," says Samantha Lewis, director of GOOSE, in a news release. "It is innovative, disruptive, and led by an all-star CEO that has a proven track record in recruiting top talent and top tier investors. GOOSE has been with Andrew from the beginning of his entrepreneurial pursuits and, still, he continues to impress us everyday."

Outrider, which has 75 employees — including 50 engineers focused on the automation technology — has launched pilots with Georgia-Pacific and four Fortune 200 companies. Smith says his relationship with GOOSE has had a positive effect on his career and his startup.

"The experience of GOOSE membership is unmatched. GOOSE, it's founder Jack Gill, and initial members, Art Ciocca and Rod Canion, played major roles in my entrepreneurial career by funding my first successful clean startup and then becoming seed investors in Outrider," says Smith in the release. "I am fortunate to have the team at GOOSE by our side again as we officially emerge from stealth and continue to scale the business."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”