A Houston company with a promising immuno-oncology is one step closer to delivering its cancer-fighting drug to patients who need it. Photo via Getty Images

A Houston immuno-oncology company has recently made major headway with the FDA, including both a fast track and an orphan drug designation. It will soon start a phase 2 trial of its promising cancer fighting innovation.

 Diakonos Oncology was born in 2016, the brainchild of Baylor researchers already hard at work in the realm of dendritic cell vaccines. Drs. Will Decker, Matt Halpert, and Vanaja Konduri partnered with Dan Faust, a Houston businessman and pharmacist, to bring their treatment to the public, says COO Jay Hartenbach.

The name Diakonos means “deacon or servant in Greek,” he explains. “A lot of companies end up focusing on treating a specific disease or cancer and what you end up having is a significant amount of potential but with a lot of tradeoffs and downsides. And so our goal is we need to eliminate the cancer but we can't harm or dramatically malign the patient in doing so.”

How do they do that? Because the therapy catalyzes a natural immune response, it’s the patient’s own body that’s fighting the cancer. Hartenbach credits Decker with the idea of educating dendritic cells to attack cancer, in this case, glioblastoma multiforme (GBM), one of the most aggressive cancers with which doctors and patients are forced to tangle.

“Our bodies are already very good at responding very quickly and aggressively to what it perceives as virally infected cells. And so what Dr. Decker did was basically trick the immune system by infecting these dendritic cells with the cancer specific protein and mRNA,” details Hartenbach.

Jay Hartenbach is the COO of Diakonos Oncology. Photo courtesy of Diakonos Oncology

But GBM isn’t the only cancer on which Diakonos Oncology has its sights set. Other notably stubborn-to-treat cancers that they’re working on include pancreatic cancer and angiosarcoma. The scientists are focused on meeting unmet medical needs, but also realize that treating such cancers would allow for the fastest determination of whether or not the treatment was effective.

The fast track designation, originally received last fall, means that the drug approval time for DOC1021, Diakonos’ glioblastoma vaccine, will be only six months. But Hartenbach highlights an additional boon, the fact that the special designation also allows for more frequent communications with the FDA.

“That’s very helpful for us, right as we're contemplating how to design the upcoming trials. From a business standpoint, it also is incredibly helpful because it provides a third party validation of what we're doing and the results that we're seeing,” he says.

What they’re seeing includes the survival of 13 out of 16 patients from the initial October 2021 enrollment. The three patients who passed away received the lowest dose of DOC1021. Hartenbach says that the remaining patients are thriving, with no serious adverse effects. With a median survival rate of 15 to 21 months, it’s hard to understate the significance of these patients’ success.

Diakonos Oncology is headquartered in Houston, with a staff of 10 in Space City and an additional eight distributed employees. Hartenbach says that the company’s hometown has been instrumental in its success. He mentions that the robust innovation of the Texas Medical Center meant that as the company has grown, there has never been a motivation to leave Houston.

“You're having a lot of both investment and companies actually moving to Houston,” Hartenbach says. “So we’ve been fortunate to have started there. There are bigger traditional biotech hubs, San Diego, Boston, and San Francisco, but Houston really is now putting itself on the map and it's getting a lot of attention.”

One of the companies responsible for that improved reputation? Diakonos Oncology and its promising approach to aggressive cancers.

A Houston health care company received the green light from the FDA to advance a treatment that's targeting a deadly cancer. Photo via Getty Images

Houston immunotherapy company achieves FDA designation for cancer-fighting vaccine

got the green light

The FDA has granted a Houston-based company a Fast Track designation.

Diakonos Oncology Corp. is a clinical-stage immuno-oncology company that has developed a unique dendritic cell vaccine, DOC1021. The vaccine targets glioblastoma multiforme (GBM), the most common and most lethal malignant brain tumor in adults. The aggressive tumors come with a life expectancy of about 15 months following diagnosis. About 7 percent of those diagnosed survive five years, while the 10-year outlook only sees a one-percent survival rate.

“The FDA’s decision acknowledges the potential of this new treatment approach for a very challenging disease,” Diakonos CEO Mike Wicks says in a press release. “Our protocol represents a first for cancer immunotherapy and could be viable for many types of cancers beyond GBM.”

FDA Fast Track designations are intended to expedite the haste with which drugs with early clinical promise are reviewed, likely taking them to market faster.

DOC1021 uses the body’s natural anti-viral immune response to fight GBM. The vaccine mimics viral infection with the patient’s cancer markers. Essentially, DOC1021 uses the body’s own natural ability to detect and eliminate infected cells.

The technology uses dendritic cells, white blood cells that are able to perceive threats, to its advantage. The unique cancer markers are loaded both internally and externally into the immune cells, just as they would simultaneously occur in a viral infection. The individualized treatment is administered through three precise injections that target deep cervical lymph node chains. By dosing this way, the immune responses are directed straight to the central nervous system.

The results have spoken for themselves: All of the patients who have tried the treatment have exceeded survival expectations. And just as importantly, DOC1021 appears to be extremely safe. No serious adverse effects have been reported.

“Because Phase I clinical trials are generally not statistically powered to demonstrate efficacy, detection of a statistically significant efficacy signal is very promising,” says William Decker, associate professor of immunology at Baylor College of Medicine and inventor of the DOC1021 technology.

The Phase 1 open-label trial of DOC1021 (NCT04552886) is currently taking place at both the University of Texas Health Science Center in Houston and at the MD Anderson Cancer Center at Cooper University Health Care in Camden, NJ. The trial is expected to complete this year.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown Labs names Lawson Gow as its new Houston leader

head of hou

Greentown Labs has named Lawson Gow as its Head of Houston.

Gow is the founder of The Cannon, a coworking space with seven locations in the Houston area, with additional partner spaces. He also recently served as managing partner at Houston-based investment and advisory firm Helium Capital. Gow is the son of David Gow, founder of Energy Capital's parent company, Gow Media.

According to Greentown, Gow will "enhance the founder experience, cultivate strategic partnerships, and accelerate climatetech solutions" in his new role.

“I couldn’t be more excited to join Greentown at this critical moment for the energy transition,” Gow said in a news release. “Greentown has a fantastic track record of supporting entrepreneurs in Houston, Boston, and beyond, and I am eager to keep advancing our mission in the energy transition capital of the world.”

Gow has also held analyst, strategy and advising roles since graduating from Rice University.

“We are thrilled to welcome Lawson to our leadership team,” Georgina Campbell Flatter, CEO of Greentown Labs, added in the release. “Lawson has spent his career building community and championing entrepreneurs, and we look forward to him deepening Greentown’s support of climate and energy startups as our Head of Houston.”

Gow is the latest addition to a series of new hires at Greentown Labs following a leadership shakeup.

Flatter was named as the organization's new CEO in February, replacing Kevin Dutt, Greentown’s interim CEO, who replaced Kevin Knobloch after he announced that he would step down in July 2024 after less than a year in the role.

Greentown also named Naheed Malik its new CFO in January.

Timmeko Moore Love was named the first Houston general manager and senior vice president of Greentown Labs. According to LinkedIn, she left the role in January.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Rice team keeps CO2-to-fuel devices running 50 times longer in new study

Bubbling Up

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also recently shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”