As we enter year two of the pandemic, the way hospitals function now and in the future is forever changed. Photo via Getty Images

The COVID-19 pandemic has had a drastic effect on every industry throughout the world. Additionally, we have all experienced multiple changes to our daily routine such as schools implementing virtual and hybrid learning while reconfiguring classrooms to promote social distancing and fitness studios closing off every other cardio machine and bench.

But no industry has had to pivot and innovate more than health care, which has been ground zero for the pandemic.

The pace of innovation for hospitals has been at breakneck speed — from the evolution of new treatment protocols to the need to reconfigure physical spaces to support an influx of patients while also promoting a healing environment during this unprecedented time.

Hospitals look and feel a lot different today because of significant modifications that have been made to care for patients and limit exposure to the virus. While a number of these modifications occurred under temporary state waivers, some of these changes may be here to stay.

Adding windows and alternative communication options to every room

Hospitals found that every room is valuable during a pandemic. Identifying and converting any available space, including private rooms like offices, break rooms, and conference rooms, was essential to accommodate an influx of patients during a surge. And when dealing with a highly infectious area, it is imperative to maximize staff and physician efforts while also safely minimizing the amount of time that staff members enter and exit rooms.

One way to do this is by adding windows in doors to promote patient visibility. This increased visibility can improve patient safety while conserving critical personal protective equipment. However, a down side to limiting the amount of times staff members enter and exit rooms is reduced valuable communication opportunities, which is why alternative mechanisms to communicate with patients must be in place in addition to increased visibility.

Implementing additional negative pressure capabilities

Like adding windows to every patient door, negative pressure rooms exist to keep non-contaminated areas free of airborne pathogens. In a negative pressure room, the air in the room is pulled into a room instead of being pushed out of a room, which is very effective in preventing airborne contaminants from escaping the room and infecting other people. But hospitals are not traditionally built with significant numbers of negative pressure rooms as demand for these types of rooms has historically been low.

In addition, the traditional way to design a facility is to spread negative pressure rooms throughout the hospital instead of consolidating them onto specific units. Although not required for COVID-19 patients, negative pressure rooms are helpful in ensuring maximum capabilities within different zones. In instances where negative pressure rooms could not be created, HEPA filters can still be used to "scrub" the air.

Converting anesthesia machines to ventilators

Anesthesia machines are capable of providing life-sustaining mechanical ventilation to patients with respiratory failure from diseases like COVID-19. They are used for this purpose every day in the operating room. Although they are not recommended for long-term ventilator needs, anesthesia ventilators can be modified to provide ventilatory support and are an obvious first-line backup when there are not sufficient ICU ventilators to meet patient care needs.

Building barriers to increase the safety of care

Plexiglass barriers have become a common sight in daily life including the front desks at hospitals. However, hospitals have taken it a step further and have either built or sourced equipment such as intubation boxes, which can be used during the intubation process, which consists of placing a breathing tube into a patient's airway and then connecting it to a ventilator or anesthesia machine if the patient is having surgery. Intubations are often done by an anesthesiologist, intensive care or emergency room provider; however, traditionally we had not often dealt with highly-contagious patients, so providing a higher level of protection is an important step in the containment of this type of virus.

The way healthcare providers enter and exit a COVID patient's room is as important as the proper use of PPE. In a pre-pandemic world, hospitals didn't specifically create spaces or areas within patient floors for staff to remove and discard their PPE and there wasn't any visible signage warning them that they were about to enter or leave a high-risk area. Many hospitals across the country have implemented color-coded zones within their COVID floors to caution staff of the type of precautions they should be taking at any given time. The creation of zones helps to protect staff and reduce contamination opportunities within the unit itself. Red, yellow and green zones using visual markers can be created to help provide staff designated areas that certain processes must be followed such as where PPE must be worn, where it can be donned and doffed and where PPE should not be worn.

Managing complex logistical challenges

Hospitals have been challenged with having to continue to provide uninterrupted care for COVID and non-COVID patients during the pandemic, while also handling, storing and administering vaccines. Hospitals have been at the forefront of the vaccine distribution system, working closely with state and federal officials to distribute vaccines on a large scale and reach the underserved populations that were hit hardest by COVID-19. For example, Baylor St. Luke's chose Texas Southern University, located within the Third Ward of Houston, as a vaccine site to reach communities of color and leverage its accessible location and the school's pharmacy students and faculty. And more recently, the hospital worked with Rice University to administer vaccines at its football stadium, a large venue that can be accessed easily through public transportation. Having these offsite venues with ample space has helped alleviate the space burden on hospitals during the vaccination efforts. Non-traditional healthcare delivery locations like these allow health care providers to administer more doses, closer to targeted communities than would be possible at a single hospital.

As we enter year two of the pandemic, the way hospitals function now and in the future is forever changed. Hospitals continue to learn and adapt during the COVID-19 pandemic, and in case of another pandemic, hospitals are better equipped to quickly pivot to provide care for a surge of patients and to assist in the recovery efforts.

------

Liz Youngblood is president of Baylor St. Luke's Medical Center and senior vice president and COO of St. Luke's Health.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team’s discovery brings solid-state batteries closer to EV use

A Better Battery

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

---

This article originally appeared on EnergyCaptialHTX.com.

Rice biotech accelerator appoints 2 leading researchers to team

Launch Pad

The Rice Biotech Launch Pad, which is focused on expediting the translation of Rice University’s health and medical technology discoveries into cures, has named Amanda Nash and Kelsey L. Swingle to its leadership team.

Both are assistant professors in Rice’s Department of Bioengineering and will bring “valuable perspective” to the Houston-based accelerator, according to Rice. 

“Their deep understanding of both the scientific rigor required for successful innovation and the commercial strategies necessary to bring these technologies to market will be invaluable as we continue to build our portfolio of lifesaving medical technologies,” Omid Veiseh, faculty director of the Launch Pad, said in a news release.

Amanda Nash

Nash leads a research program focused on developing cell communication technologies to treat cancer, autoimmune diseases and aging. She previously trained as a management consultant at McKinsey & Co., where she specialized in business development, portfolio strategy and operational excellence for pharmaceutical and medtech companies. She earned her doctorate in bioengineering from Rice and helped develop implantable cytokine factories for the treatment of ovarian cancer. She holds a bachelor’s degree in biomedical engineering from the University of Houston.

“Returning to Rice represents a full-circle moment in my career, from conducting my doctoral research here to gaining strategic insights at McKinsey and now bringing that combined perspective back to advance Houston’s biotech ecosystem,” Nash said in the release. “The Launch Pad represents exactly the kind of translational bridge our industry needs. I look forward to helping researchers navigate the complex path from discovery to commercialization.”

Kelsey L. Swingle

Swingle’s research focuses on engineering lipid-based nanoparticle technologies for drug delivery to reproductive tissues, which includes the placenta. She completed her doctorate in bioengineering at the University of Pennsylvania, where she developed novel mRNA lipid nanoparticles for the treatment of preeclampsia. She received her bachelor’s degree in biomedical engineering from Case Western Reserve University and is a National Science Foundation Graduate Research Fellow.

“What draws me to the Rice Biotech Launch Pad is its commitment to addressing the most pressing unmet medical needs,” Swingle added in the release. “My research in women’s health has shown me how innovation at the intersection of biomaterials and medicine can tackle challenges that have been overlooked for far too long. I am thrilled to join a team that shares this vision of designing cutting-edge technologies to create meaningful impact for underserved patient populations.”

The Rice Biotech Launch Pad opened in 2023. It held the official launch and lab opening of RBL LLC, a biotech venture creation studio in May. Read more here.

University of Houston archaeologists make history with Mayan tomb discovery

History in the Making

Two University of Houston archaeologists have made scientific history with the discovery of a Mayan king's tomb in Belize.

The UH team led by husband and wife scientists Arlen F. Chase and Diane Z. Chase made the discovery at Caracol, the largest Mayan archeological site in Belize, which is situated about 25 miles south of Xunantunich and the town of San Ignacio. Together with Belize's Institute of Archeology, as well as support from the Geraldine and Emory Ford Foundation and the KHR Family Fund, they uncovered the tomb of Caracol's founder, King Te K’ab Chaak. Their work used airborne light detection and ranging technology to uncover previously hidden roadways and structures that have been reclaimed by the jungle.

The tomb was found at the base of a royal family shrine. The king, who ascended the throne in 331 AD, lived to an advanced enough age that he no longer had teeth. His tomb held a collection of 11 pottery vessels, carved bone tubes, jadeite jewelry, a mosaic jadeite mask, Pacific spondylus shells, and various other perishable items. Pottery vessels found in the chamber depict a Maya ruler wielding a spear as he receives offerings from supplicants represented as deities; the figure of Ek Chuah, the Maya god of traders, surrounded by offerings; and bound captives, a motif also seen in two related burials. Additionally, two vessels had lids adorned with modeled handles shaped like coatimundi (pisote) heads. The coatimundi, known as tz’uutz’ in Maya, was later adopted by subsequent rulers of Caracol as part of their names.

 Diane Chase archaeologist in Mayan tomb Diane Z. Chase in the Mayan tomb. Photo courtesy of University of Houston

During the Classical Period, Caracol was one of the main hubs of the Mayan Lowlands and covered an area bigger than that of present-day Belize City. Populations survived in the area for at least 1,000 years before the city was abandoned sometime around 900 AD. The royal dynasty established by Te K’ab Chaak continued at Caracol for over 460 years.

The find is also significant because this was roughly when the Mexican city of Teotihuacan made contact with Caracol, leading to a long relationship of trade and cultural exchange. Cremation sites found in Caracol contain items that would have come from Teotihuacan, showing the relationship between the two distant cities.

"Both central Mexico and the Maya area were clearly aware of each other’s ritual practices, as reflected in the Caracol cremation," said Arlen F. Chase, professor and chair of Comparative Cultural Studies at the University of Houston.

“The connections between the two regions were undertaken by the highest levels of society, suggesting that initial kings at various Maya cities — such as Te K’ab Chaak at Caracol — were engaged in formal diplomatic relationships with Teotihuacan.”

The Chases will present their findings at a conference on Maya–Teotihuacan interaction hosted by the Maya Working Group at the Santa Fe Institute in New Mexico in August 2025.

 UH professors Chase make Mayan Discovery UH archaeologists Arlen F. Chase and Diane Z. Chase Photo courtesy of University of Houston

 

---

This story originally appeared on CultureMap.com.