Houston researchers are working to provide COVID-19 solutions amid the pandemic. Getty Images

Since even the early days of COVID-19's existence, researchers all over the world were rallying to find a cure or potential vaccine — which usually take years to make, test, and get approved.

Houston researchers were among this group to put their thinking caps on to come up with solutions to the many problems of the coronavirus. From the testing of existing drugs to tapping into tech to map the disease, here are some research projects that are happening in Houston and are emerging to fight the pandemic.

Baylor College of Medicine evaluating potential COVID-fighting drug

Human Body Organs (Lungs Anatomy)

Baylor College of Medicine has identified a drug that could potentially help heal COVID-19 patients. Photo via bcm.edu

While Baylor College of Medicine has professionals attacking COVID-19 from all angles, one recent discovery at BCM includes a new drug for treating COVID-caused pneumonia.

BCM researchers are looking into Tocilizumab's (TCZ), an immunomodulator drug, effect on patients at Baylor St. Luke's Medical Center and Harris Health System's Ben Taub Hospital.

"The organ most commonly affected by COVID-19 is the lung, causing pneumonia for some patients and leading to difficulty breathing," says Dr. Ivan O. Rosas, chief of the pulmonary, critical care and sleep medicine section at BCM, in a news release.

TCZ, which has been used to successfully treat hyperimmune responses in cancer patients being treated with immunotherapy, targets the immune response to the coronavirus. It isn't expected to get rid of the virus, but hopefully will reduce the "cytokine storm," which is described as "the hyper-immune response triggered by the viral pneumonia" in the release.

The randomized clinical trial is looking to treat 330 participants and estimates completion of enrollment early next month and is sponsored by Genentech, a biotechnology company.

Texas A&M University leads drug testing

A Texas A&M University researcher is trying to figure out if an existing vaccine has an effect on COVID-19. Screenshot via youtube.com

A researcher from Texas A&M University is working with his colleagues on a short-term response to COVID-19. A vaccine, called BDG, has already been deemed safe and used for treatment for bladder cancer. BDG can work to strengthen the immune system.

"It's not going to prevent people from getting infected," says Dr. Jeffrey D. Cirillo, a Regent's Professor of Microbial Pathogenesis and Immunology at the Texas A&M Health Science Center, in a news release. "This vaccine has the very broad ability to strengthen your immune response. We call it 'trained immunity.'"

A&M leads the study in partnership with the University of Texas MD Anderson Cancer Center and Baylor College of Medicine in Houston, as well as Harvard University's School of Public Health and Cedars Sinai Medical Center in Los Angeles.

Texas A&M Chancellor John Sharp last week set aside $2.5 million from the Chancellor's Research Initiative for the study. This has freed up Cirillo's team's time that was previously being used to apply for grants.

"If there was ever a time to invest in medical research, it is now," Sharp says in the release. "Dr. Cirillo has a head start on a possible coronavirus treatment, and I want to make sure he has what he needs to protect the world from more of the horrible effects of this pandemic."

Currently, the research team is recruiting 1,800 volunteers for the trial that is already underway in College Station and Houston — with the potential for expansion in Los Angeles and Boston. Medical professionals interested in the trial can contact Gabriel Neal, MD at gneal@tamu.edu or Jeffrey Cirillo, PhD at jdcirillo@tamu.edu or George Udeani, PharmD DSc at udeani@tamu.edu.

"This could make a huge difference in the next two to three years while the development of a specific vaccine is developed for COVID-19," Cirillo says in the release.

Rice University is creating a COVID-19 map

Researchers at Rice University's Center for Research Computing's Spatial Studies Lab have mapped out all cases of COVID-19 across Texas by tapping into public health data. The map, which is accessible at coronavirusintexas.org, also identifies the number of people tested across the state, hospital bed utilization rate, and more.

The project is led by Farès el-Dahdah, director of Rice's Humanities Research Center. El-Dahdah used open source code made available by ESRI and data from the Texas Department of State Health Services and Definitive Healthcare.

"Now that the Texas Division of Emergency Management released its own GIS hub, our dashboard will move away from duplicating information in order to correlate other numbers such as those of available beds and the potential for increasing the number of beds in relation to the location of available COVID providers," el-Dahdah says in a press release.

"We're now adding another layer, which is the number of available nurses," el-Dahdah continues. "Because if this explodes, as a doctor friend recently told me, we could be running out of nurses before running out of beds."


Texas Heart Institute is making vaccines more effective

A new compound being developed at Texas Heart Institute could revolutionize the effect of vaccines. Photo via texasheart.org

Molecular technology coming out of the Texas Heart Institute and 7 HIlls Pharma could make vaccines — like a potential coronavirus vaccine — more effective. The oral integrin activator has been licensed to 7 Hills and is slated to a part of a Phase 1 healthy volunteer study to support solid tumor and infectious disease indications in the fall, according to a press release.

The program is led by Dr. Peter Vanderslice, director of biology at the Molecular Cardiology Research Laboratory at Texas Heart Institute. The compound was first envisioned to improve stem cell therapy for potential use as an immunotherapeutic for certain cancers.

"Our research and clinical colleagues are working diligently every day to advance promising discoveries for at risk patients," says Dr. Darren Woodside, co-inventor and vice president for research at the Texas Heart Institute, in the release. "This platform could be an important therapeutic agent for cardiac and cancer patients as well as older individuals at higher risk for infections."

University of Houston's nanotech health monitor

UH researchers have developed a pliable, thin material that can monitor changes in temperature. Photo via uh.edu

While developed prior to the pandemic, nanotechnology out of the University of Houston could be useful in monitoring COVID patients' temperatures. The material, as described in a paper published by ACS Applied Nano Materials, is made up of carbon nanotubes and can indicate slight body temperature changes. It's thin and pliable, making it ideal for a wearable health tech device.

"Your body can tell you something is wrong before it becomes obvious," says Seamus Curran, a physics professor at the University of Houston and co-author on the paper, in a news release.

Curran's nanotechnology research with fellow researchers Kang-Shyang Liao and Alexander J. Wang, which also has applications in making particle-blocking face masks, began almost 10 years ago.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.

Texas space co. takes giant step toward lunar excavator deployment

Out of this world

Lunar exploration and development are currently hampered by the fact that the moon is largely devoid of necessary infrastructure, like spaceports. Such amenities need to be constructed remotely by autonomous vehicles, and making effective devices that can survive the harsh lunar surface long enough to complete construction projects is daunting.

Enter San Antonio-based Astroport Space Technologies. Founded in San Antonio in 2020, the company has become a major part of building plans beyond Earth, via its prototype excavator, and in early February, it completed an important field test of its new lunar excavator.

The new excavator is designed to function with California-based Astrolab's Flexible Logistics and Exploration (FLEX) rover, a highly modular vehicle that will perform a variety of functions on the surface of the moon.

In a recent demo, the Astroport prototype excavator successfully integrated with FLEX and proceeded to dig in a simulated lunar surface. The excavator collected an average of 207 lbs (94kg) of regolith (lunar surface dust) in just 3.5 minutes. It will need that speed to move the estimated 3,723 tons (3,378 tonnes) of regolith needed for a lunar spaceport.

After the successful test, both Astroport and Astrolab expressed confidence that the excavator was ready for deployment. "Leading with this successful excavator demo proves that our technology is no longer theoretical—it is operational," said Sam Ximenes, CEO of Astroport.

"This is the first of many implements in development that will turn Astrolab's FLEX rover into the 'Swiss Army Knife' of lunar construction. To meet the infrastructure needs of the emerging lunar economy, we must build the 'Port' before the 'Ship' arrives. By leveraging the FLEX platform, we are providing the Space Force, NASA, and commercial partners with a 'Shovel-Ready' construction capability to secure the lunar high ground."

"We are excited to provide the mobility backbone for Astroport's groundbreaking construction technology," said Jaret Matthews, CEO of Astrolab, in a release. "Astrolab is dedicated to establishing a viable lunar ecosystem. By combining our FLEX rover's versatility with Astroport's civil engineering expertise, we are delivering the essential capabilities required for a sustainable lunar economy."

---

This article originally appeared on CultureMap.com.

Houston biotech co. raises $11M to advance ALS drug development

drug money

Houston-based clinical-stage biotechnology company Coya Therapeutics (NASDAQ: COYA) has raised $11.1 million in a private investment round.

India-based pharmaceuticals company Dr. Reddy’s Laboratories Inc. led the round with a $10 million investment, according to a news release. New York-based investment firm Greenlight Capital, Coya’s largest institutional shareholder, contributed $1.1 million.

The funding was raised through a definitive securities purchase agreement for the purchase and sale of more than 2.5 million shares of Coya's common stock in a private placement at $4.40 per share.

Coya reports that it plans to use the proceeds to scale up manufacturing of low-dose interleukin-2 (IL-2), which is a component of its COYA 302 and will support the commercial readiness of the drug. COYA 302 enhances anti-inflammatory T cell function and suppresses harmful immune activity for treatment of Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Dementia (FTD), Parkinson’s disease and Alzheimer’s disease.

The company received FDA acceptance for its investigational new drug application for COYA 302 for treating ALS and FTD this summer. Its ALSTARS Phase 2 clinical trial for ALS treatment launched this fall in the U.S. and Canada and has begun enrolling and dosing patients. Coya CEO Arun Swaminathan said in a letter to investors that the company also plans to advance its clinical programs for the drug for FTD therapy in 2026.

Coya was founded in 2021. The company merged with Nicoya Health Inc. in 2020 and raised $10 million in its series A the same year. It closed its IPO in January 2023 for more than $15 million. Its therapeutics uses innovative work from Houston Methodist's Dr. Stanley H. Appel.