Houston researchers are working to provide COVID-19 solutions amid the pandemic. Getty Images

Since even the early days of COVID-19's existence, researchers all over the world were rallying to find a cure or potential vaccine — which usually take years to make, test, and get approved.

Houston researchers were among this group to put their thinking caps on to come up with solutions to the many problems of the coronavirus. From the testing of existing drugs to tapping into tech to map the disease, here are some research projects that are happening in Houston and are emerging to fight the pandemic.

Baylor College of Medicine evaluating potential COVID-fighting drug

Human Body Organs (Lungs Anatomy)

Baylor College of Medicine has identified a drug that could potentially help heal COVID-19 patients. Photo via bcm.edu

While Baylor College of Medicine has professionals attacking COVID-19 from all angles, one recent discovery at BCM includes a new drug for treating COVID-caused pneumonia.

BCM researchers are looking into Tocilizumab's (TCZ), an immunomodulator drug, effect on patients at Baylor St. Luke's Medical Center and Harris Health System's Ben Taub Hospital.

"The organ most commonly affected by COVID-19 is the lung, causing pneumonia for some patients and leading to difficulty breathing," says Dr. Ivan O. Rosas, chief of the pulmonary, critical care and sleep medicine section at BCM, in a news release.

TCZ, which has been used to successfully treat hyperimmune responses in cancer patients being treated with immunotherapy, targets the immune response to the coronavirus. It isn't expected to get rid of the virus, but hopefully will reduce the "cytokine storm," which is described as "the hyper-immune response triggered by the viral pneumonia" in the release.

The randomized clinical trial is looking to treat 330 participants and estimates completion of enrollment early next month and is sponsored by Genentech, a biotechnology company.

Texas A&M University leads drug testing

A Texas A&M University researcher is trying to figure out if an existing vaccine has an effect on COVID-19. Screenshot via youtube.com

A researcher from Texas A&M University is working with his colleagues on a short-term response to COVID-19. A vaccine, called BDG, has already been deemed safe and used for treatment for bladder cancer. BDG can work to strengthen the immune system.

"It's not going to prevent people from getting infected," says Dr. Jeffrey D. Cirillo, a Regent's Professor of Microbial Pathogenesis and Immunology at the Texas A&M Health Science Center, in a news release. "This vaccine has the very broad ability to strengthen your immune response. We call it 'trained immunity.'"

A&M leads the study in partnership with the University of Texas MD Anderson Cancer Center and Baylor College of Medicine in Houston, as well as Harvard University's School of Public Health and Cedars Sinai Medical Center in Los Angeles.

Texas A&M Chancellor John Sharp last week set aside $2.5 million from the Chancellor's Research Initiative for the study. This has freed up Cirillo's team's time that was previously being used to apply for grants.

"If there was ever a time to invest in medical research, it is now," Sharp says in the release. "Dr. Cirillo has a head start on a possible coronavirus treatment, and I want to make sure he has what he needs to protect the world from more of the horrible effects of this pandemic."

Currently, the research team is recruiting 1,800 volunteers for the trial that is already underway in College Station and Houston — with the potential for expansion in Los Angeles and Boston. Medical professionals interested in the trial can contact Gabriel Neal, MD at gneal@tamu.edu or Jeffrey Cirillo, PhD at jdcirillo@tamu.edu or George Udeani, PharmD DSc at udeani@tamu.edu.

"This could make a huge difference in the next two to three years while the development of a specific vaccine is developed for COVID-19," Cirillo says in the release.

Rice University is creating a COVID-19 map

Researchers at Rice University's Center for Research Computing's Spatial Studies Lab have mapped out all cases of COVID-19 across Texas by tapping into public health data. The map, which is accessible at coronavirusintexas.org, also identifies the number of people tested across the state, hospital bed utilization rate, and more.

The project is led by Farès el-Dahdah, director of Rice's Humanities Research Center. El-Dahdah used open source code made available by ESRI and data from the Texas Department of State Health Services and Definitive Healthcare.

"Now that the Texas Division of Emergency Management released its own GIS hub, our dashboard will move away from duplicating information in order to correlate other numbers such as those of available beds and the potential for increasing the number of beds in relation to the location of available COVID providers," el-Dahdah says in a press release.

"We're now adding another layer, which is the number of available nurses," el-Dahdah continues. "Because if this explodes, as a doctor friend recently told me, we could be running out of nurses before running out of beds."


Texas Heart Institute is making vaccines more effective

A new compound being developed at Texas Heart Institute could revolutionize the effect of vaccines. Photo via texasheart.org

Molecular technology coming out of the Texas Heart Institute and 7 HIlls Pharma could make vaccines — like a potential coronavirus vaccine — more effective. The oral integrin activator has been licensed to 7 Hills and is slated to a part of a Phase 1 healthy volunteer study to support solid tumor and infectious disease indications in the fall, according to a press release.

The program is led by Dr. Peter Vanderslice, director of biology at the Molecular Cardiology Research Laboratory at Texas Heart Institute. The compound was first envisioned to improve stem cell therapy for potential use as an immunotherapeutic for certain cancers.

"Our research and clinical colleagues are working diligently every day to advance promising discoveries for at risk patients," says Dr. Darren Woodside, co-inventor and vice president for research at the Texas Heart Institute, in the release. "This platform could be an important therapeutic agent for cardiac and cancer patients as well as older individuals at higher risk for infections."

University of Houston's nanotech health monitor

UH researchers have developed a pliable, thin material that can monitor changes in temperature. Photo via uh.edu

While developed prior to the pandemic, nanotechnology out of the University of Houston could be useful in monitoring COVID patients' temperatures. The material, as described in a paper published by ACS Applied Nano Materials, is made up of carbon nanotubes and can indicate slight body temperature changes. It's thin and pliable, making it ideal for a wearable health tech device.

"Your body can tell you something is wrong before it becomes obvious," says Seamus Curran, a physics professor at the University of Houston and co-author on the paper, in a news release.

Curran's nanotechnology research with fellow researchers Kang-Shyang Liao and Alexander J. Wang, which also has applications in making particle-blocking face masks, began almost 10 years ago.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston hospital names leading cancer scientist as new academic head

new hire

Houston Methodist Academic Institute has named cancer clinician and scientist Dr. Jenny Chang as its new executive vice president, president, CEO, and chief academic officer.

Chang was selected following a national search and will succeed Dr. H. Dirk Sostman, who will retire in February after 20 years of leadership. Chang is the director of the Houston Methodist Dr. Mary and Ron Neal Cancer Center and the Emily Herrmann Presidential Distinguished Chair in Cancer Research. She has been with Houston Methodist for 15 years.

Over the last five years, Chang has served as the institute’s chief clinical science officer and is credited with strengthening cancer clinical trials. Her work has focused on therapy-resistant cancer stem cells and their treatment, particularly relating to breast cancer.

Her work has generated more than $35 million in funding for Houston Methodist from organizations like the National Institutes of Health and the National Cancer Institute, according to the health care system. In 2021, Dr. Mary Neal and her husband Ron Neal, whom the cancer center is now named after, donated $25 million to support her and her team’s research on advanced cancer therapy.

In her new role, Chang will work to expand clinical and translational research and education across Houston Methodist in digital health, robotics and bioengineered therapeutics.

“Dr. Chang’s dedication to Houston Methodist is unparalleled,” Dr. Marc L. Boom, Houston Methodist president and CEO, said in a news release. “She is committed to our mission and to helping our patients, and her clinical expertise, research innovation and health care leadership make her the ideal choice for leading our academic mission into an exciting new chapter.”

Chang is a member of the American Association of Cancer Research (AACR) Stand Up to Cancer Scientific Advisory Council. She earned her medical degree from Cambridge University in England and completed fellowship training in medical oncology at the Royal Marsden Hospital/Institute for Cancer Research. She earned her research doctorate from the University of London.

She is also a professor at Weill Cornell Medical School, which is affiliated with the Houston Methodist Academic Institute.

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”

------

This article originally appeared on EnergyCapital.

Biosciences startup becomes Texas' first decacorn after latest funding

A Dallas-based biosciences startup whose backers include millionaire investors from Austin and Dallas has reached decacorn status — a valuation of at least $10 billion — after hauling in a series C funding round of $200 million, the company announced this month. Colossal Biosciences is reportedly the first Texas startup to rise to the decacorn level.

Colossal, which specializes in genetic engineering technology designed to bring back or protect various species, received the $200 million from TWG Global, an investment conglomerate led by billionaire investors Mark Walter and Thomas Tull. Walter is part owner of Major League Baseball’s Los Angeles Dodgers, and Tull is part owner of the NFL’s Pittsburgh Steelers.

Among the projects Colossal is tackling is the resurrection of three extinct animals — the dodo bird, Tasmanian tiger and woolly mammoth — through the use of DNA and genomics.

The latest round of funding values Colossal at $10.2 billion. Since launching in 2021, the startup has raised $435 million in venture capital.

In addition to Walter and Tull, Colossal’s investors include prominent video game developer Richard Garriott of Austin and private equity veteran Victor Vescov of Dallas. The two millionaires are known for their exploits as undersea explorers and tourist astronauts.

Aside from Colossal’s ties to Dallas and Austin, the startup has a Houston connection.

The company teamed up with Baylor College of Medicine researcher Paul Ling to develop a vaccine for elephant endotheliotropic herpesvirus (EEHV), the deadliest disease among young elephants. In partnership with the Houston Zoo, Ling’s lab at the Baylor College of Medicine has set up a research program that focuses on diagnosing and treating EEHV, and on coming up with a vaccine to protect elephants against the disease. Ling and the BCMe are members of the North American EEHV Advisory Group.

Colossal operates research labs Dallas, Boston and Melbourne, Australia.

“Colossal is the leading company working at the intersection of AI, computational biology, and genetic engineering for both de-extinction and species preservation,” Walter, CEO of TWG Globa, said in a news release. “Colossal has assembled a world-class team that has already driven, in a short period of time, significant technology innovations and impact in advancing conservation, which is a core value of TWG Global.”

Well-known genetics researcher George Church, co-founder of Colossal, calls the startup “a revolutionary genetics company making science fiction into science fact.”

“We are creating the technology to build de-extinction science and scale conservation biology,” he added, “particularly for endangered and at-risk species.”