A Houston expert shares reasons to swap screen time for extended reality. Photo via Getty Images

What does your reality look like? Look around you. What do you see? It would be safe to say (almost guarantee) that you are looking at a screen right now, correct? We are consumers of information and use screens to access, view, and create information.

But why are we spending so much of our time looking at screens?

One poll stated that the average adult will spend 34 years of their lives looking at screens. It almost feels that screens (TV, laptop, or phone) have become so ubiquitous in everyday life that they have blended into our reality and are just ‘there’. Do you think the inventor of the TV, John Logie Baird, ever fully grasped how much the fabric of society would revolve around his invention? Time and time again, incredible disruptions have always come from breaking the ‘norm’ and given the vast level of integration of screens into our everyday reality, this ‘norm’ feels long overdue for innovation. This is where the world of augmented reality and spatial computing comes into play.

The COVID-19 pandemic saw an unprecedented shift to even more screen time and interactions using remote video communication platforms. It was also around this time that wireless virtual reality headsets were, for the first time ever, economically accessible to the consumer due to the large push of one multinational corporation. Fast forward to 2023, there are even more companies beginning to enter the market with new extended reality (XR) headsets (i.e. virtual, mixed, and augmented reality) that offer spatial computing – the ability for computers to blend into the physical worlds (amongst other things).

Some of our innovation engineering activities at the Houston Methodist Institute for Technology, Innovation, and Education (MITIE) have focused on specific use cases of XR in surgical education and training. One of our projects, the MITIEverse, is a VR-based platform focused on creating the first-ever metaverse for medical innovation. It is a fully immersive VR environment that allows the user to view 3D-rendered patient anatomies whilst watching the actual patient procedure, even offering the ability to meet the surgeon who performed the operation. It also affords the ability to give a ‘Grand Rounds’ style presentation to an audience of 50 participants.

We have looked at using augmented reality to control robotic-assisted surgery platforms. In our proof-of-concept prototype, we successfully demonstrated the manipulation of guide wires and catheters using nothing more than an augmented reality headset, illustrating the possibility of surgeons performing surgery at a distance. Houston Methodist is dedicated to transforming healthcare using the latest innovative technology including XR. The question we now need to ask – is society ready and willing to replace screens with XR headsets?

To learn more about our XR initiatives and other Houston’s cross-industry innovation collaborations, attend Pumps & Pipes Annual Event 2023, Problem Xchange: Where Solutions Converge next month at The Ion.

------

Stuart Corr is the director of Innovation Systems Engineering at Houston Methodist and executive director of Pumps & Pipes.

A mixed reality lab at the University of Houston is merging the physical and digital worlds. Photo via UH.edu

UH lab using mixed reality to optimize designs for the Moon and Mars

hi, tech

University of Houston researchers and students are bringing multiple realities together to help improve the design process for crewed space missions.

Helmed by Vittorio Netti, a researcher for UH and a space architect, the university has launched an XR Lab within the University of Houston architecture building. The lab allows researchers to combine mixed reality (MR), virtual reality (VR), augmented reality (AR) and extended reality (XR) to "blend the physical and digital worlds" to give designers a better understanding of life in space, according to a release from UH.

In the lab researchers can wear MY space suits and goggles, take a VR space walk, or feel what it's like to float to the International Space Station with the help of XR and a crane.

The area in which the researchers conduct this work is known as the "cage" and was developed during a six-month research and design study of lunar surface architecture sponsored by Boeing, which aimed to learn more about the design of a lunar terrain vehicle and a small lunar habitat.

The work is part of UH's Sasakawa International Center of Space Architecture (SICSA), which is led by Olga Bannova, a research associate professor and director of the space architecture graduate program at UH.

She says work like this will drastically cut down research and development time when designing space structures.

“These technologies should be harnessed to mitigate the dependency on physical prototyping of assets and help optimize the design process, drastically reducing research-and-development time and providing a higher level of immersion,” Bannova said in a statement.

Today the research team is shifting its focus on designing for a Mars landing. In the future, they aim to demonstrate and test the system for habitats designed for both lunar and Martian surfaces. They are also working with Boeing to test designs in microgravity, or zero gravity, which exists inside the International Space Station.

Mixed Reality Raising the Bar for Space Architecture on the Moon and MarsStep into this 'Cage' at the University of Houston where physical and digital worlds are merged, allowing students to see and ...

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Rice launches 'brain economy' initiative at World Economic Forum

brain health

Rice University has launched an initiative that will position “brain capital” as a key asset in the 21st century.

Rice rolled out the Global Brain Economy Initiative on Jan. 21 at the World Economic Forum in Davos, Switzerland.

“This initiative positions brain capital, or brain health and brain skills, at the forefront of global economic development, particularly in the age of artificial intelligence,” the university said in a news release.

The Rice-based initiative, whose partners are the University of Texas Medical Branch in Galveston and the Davos Alzheimer’s Collaborative, aligns with a recent World Economic Forum and McKinsey Health Institute report titled “The Human Advantage: Stronger Brains in the Age of AI,” co-authored by Rice researcher Harris Eyre. Eyre is leading the initiative.

“With an aging population and the rapid transformation of work and society driven by AI, the urgency has never been greater to focus on brain health and build adaptable human skills—both to support people and communities and to ensure long-term economic stability,” says Amy Dittmar, a Rice provost and executive vice president for academic affairs.

This initiative works closely with the recently launched Rice Brain Institute.

In its first year, the initiative will establish a global brain research agenda, piloting brain economy strategies in certain regions, and introducing a framework to guide financial backers and leaders. It will also advocate for public policies tied to the brain economy.

The report from the McKinsey Health Institute and World Economic Forum estimates that advancements in brain health could generate $6.2 trillion in economic gains by 2050.

“Stronger brains build stronger societies,” Eyre says. “When we invest in brain health and brain skills, we contribute to long-term growth, resilience, and shared prosperity.”